No Fermat pseudoprime of the form u²−2 to base 2

THE PRIME NUMBER SERIES 31

No Fermat pseudoprime of the form u²−2 to base 2

 

**Theorem.**
There exists no composite odd number

    \[ U=u^2-2 \qquad (u\ge3\ \text{ungerade}), \]

for which

    \[ 2^{U-1}\equiv1\pmod U \]

holds.

**Proof.**
We carry out the proof by contradiction.

Assume that there exists a composite odd number

    \[ U=u^2-2 \]

with

    \[ 2^{U-1}\equiv1\pmod U. \]

Then U is a Fermat pseudoprime to base 2.
For every prime divisor p ∣ U we have

(1)   \[ \operatorname{ord}_p(2)\mid (U-1)=u^2-3. \]

From  p\mid u^2-2 follows

    \[ u^2\equiv2\pmod p, \]

thus 2 thus is a quadratic residue modulo p. Thus it holds

    \[ \left(\frac{2}{p}\right)=1, \]

and by the law of quadratic reciprocity

(2)   \[ p\equiv\pm1\pmod8. \]

Since u is odd, we have u^2\equiv1\pmod8, therefore

    \[ p\equiv u^2-2\equiv7\pmod8. \]

In particular (p-1)/2 is odd.
Because 2 is a square modulo p, follows

(3)   \[ \operatorname{ord}_p(2)\mid\frac{p-1}{2}. \]

From (1) and (3) we obtain

(4)   \[ \operatorname{ord}_p(2)\mid \gcd\!\left(u^2-3,\frac{p-1}{2}\right). \]

**Lemma.** For every prime divisor p\mid(u^2-2) we have

    \[ \gcd\!\left(u^2-3,\frac{p-1}{2}\right)=1. \]

*Proof of the Lemma.*
From p\mid u^2-2 exists a k\in\mathbb{Z} with

    \[ u^2=2+kp, \]

thus

    \[ u^2-3=kp-1. \]

Let

    \[ d=\gcd\!\left(u^2-3,\frac{p-1}{2}\right). \]

Then we have

    \[ d\mid(kp-1),\qquad d\mid\frac{p-1}{2}. \]

From d\mid\frac{p-1}{2} follows

(5)   \[ p\equiv1\pmod{2d}. \]

Reduction of u^2=2+kp modulo d yields, because of (5)

(6)   \[ u^2\equiv2+k\pmod d. \]

On the other hand, it follows from d\mid(u^2-3)

(7)   \[ u^2\equiv3\pmod d. \]

From (6) and (7) follows

    \[ k\equiv1\pmod d. \]

Thus it holds

    \[ kp-1\equiv p-1\pmod d. \]

Because d\mid(kp-1), follows d\mid(p-1).
Because (p-1)/2 is odd, it follows

    \[ d\mid\gcd(p-1,\tfrac{p-1}{2})=1, \]

thus d=1.

From (4) and the lemma it follows

    \[ \operatorname{ord}_p(2)=1, \]

thus

    \[ 2\equiv1\pmod p, \]

which is impossible for a prime number p>1.

The contradiction shows that the assumption was false.
Thus there exists no composite odd number of the form

    \[ U=u^2-2, \]

that is a Fermat pseudoprime to base 2.

 

Munich, 11 January 2026

Gottfried Färberböck

 

Archived version:
G. Färberböck, “No Fermat pseudoprime of the form u²−2 to base 2”,
Zenodo (2026).
https://doi.org/10.5281/zenodo.18232110