The determination of all prime numbers in a selected range with the n-method
PRIME NUMBER SERIES 6
The determination of all prime numbers in a selected range with the n-method
The n-method is based on premise (1) and the set operations (2) to (5):
(1) 2 is the smallest and the one and only even prime number.
(2)
\ {2} = {p | p = 2np+3 ʌ np ∈
}
(3)
= {np | np ∈
ʌ np ≠ nkm}
(4)
=
\ ![]()
(5)
= {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈
}
PROOF of (1):
(a) Because there exists no natural number between 1 and 2, 2 can be only divisible integrally by 1 and itself. Therfore 2 is the smallest prime number.
(b) Every even number greater than 2 is given by
(2c + 4) ʌ c ∈ ℕ
This can be represented as product
2∙ (c+2) ʌ c ∈ ℕ
Thus every even number >2 is divisible integrally by 2 and therefore not a prime number.
Since no prime >2 is even, all other primes must be odd. The formula
p = 2np +3
yields only odd numbers, since 2np for np ∈ ℕ is always even or 0 and an even number or 0 added with 3 yields an odd number.
PROOF of (5):
If one sets
ukm = 2nkm+3
and substitutes nkm from
(5) Nkm = {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ ℕ}
results in
ukm = 2(2k²+6k+3+m(2k+3))+3
= 4k²+12k+6+2m(2k+3)+3
= 4k²+12k+9+2m(2k+3)
ukm = (2k+3)²+2m(2k+3)
and further
ukm =(2k+3) (2k+3+2m)
ukm is therefore the product of the odd numbers
2k+3
and
2k+3+2m
With k,m ∈ ℕ, (2k+3)(2k+3+2m) yields all possible products of odd numbers greater than 1, and hence all composite odd numbers greater than 1 that exist.
Thus yields
= {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈
}
all nkm which are given in the formula
ukm=2nkm+3
which yield all composite odd numbers greater than 1.
PROOF of (4)
=
\
:
The set of natural numbers
includes all n, which yield in the formula
U=2n+3
all odd numbers greater than 1. And all odd numbers greater than 1 can only be composite or non-composite (=prime). Since
nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ ![]()
yields all n, which give all composite numbers in U=2n+3, all others must be n=np. Consequently
=
\ ![]()
must be correct.
PROOF of (2)
\ {2} = {p | p = 2np+3 ʌ np ∈
}
and
(3)
= {np | np ∈
ʌ np ≠ nkm}:
In U=2n+3, n can be only one of the two: nkm or np.
For the rest of the proof, suppose there is the case where n=nkm=np. But since nkm supplies all n, which in 2n+3 supplies all composite odd numbers, nkm cannot supply n, which supply non-composite numbers (=primes). So there must be
\ {2} = {p | p = 2np+3 ʌ np ∈
}
and
= {np | np ∈
ʌ np ≠ nkm}
be correct.
What needed to be proved.
EXAMPLE 1: It shall be determined all prime numbers between 7100 and 7200 if existing:
| Umin | = | 7101 | k | mmin | mmax |
| Umax | = | 7199 | 0 | 1182 | 1198 |
| nmin=⌈(Umin -3)/2⌉ | = | 3549 | 1 | 708 | 717 |
| nmax=⌊(Umax -3)/2⌋ | = | 3598 | 2 | 504 | 510 |
| kmin | = | 0 | 3 | 390 | 395 |
| kmax=⌊1/2*(-3+√Umax)⌋ | = | 40 | 4 | 318 | 321 |
| mmin=f(k)=⌈(nmin-2k²-6k-3)/(2k+3)⌉ | 5 | 267 | 270 | ||
| mmax=f(k)=⌊(nmax-2k²-6k-3)/(2k+3)⌋ | 6 | 230 | 232 | ||
| 7 | 201 | 203 | |||
| Legend: | 8 | 178 | 179 | ||
| Umin=smallest odd number in the selected range | 9 | 159 | 160 | ||
| Umax=largest odd number in the selected range | 10 | 143 | 145 | ||
| 11 | 130 | 131 | |||
| 12 | 118 | 119 | |||
| 13 | 108 | 109 | |||
| 14 | 100 | 100 | |||
| 15 | 92 | 92 | |||
| 16 | 84 | 85 | |||
| 17 | 78 | 78 | |||
| 18 | 72 | 72 | |||
| 19 | 67 | 67 | |||
| 20 | 62 | 62 | |||
| 21 | 57 | 57 | |||
| 22 | 53 | 53 | |||
| 23 | 48 | 48 | |||
| 24 | 45 | 45 | |||
| 25 | 41 | 41 | |||
| 26 | 38 | 37 | |||
| 27 | 34 | 34 | |||
| 28 | 31 | 31 | |||
| 29 | 28 | 28 | |||
| 30 | 25 | 25 | |||
| 31 | 23 | 22 | |||
| 32 | 20 | 20 | |||
| 33 | 17 | 17 | |||
| 34 | 15 | 15 | |||
| 35 | 13 | 12 | |||
| 36 | 10 | 10 | |||
| 37 | 8 | 8 | |||
| 38 | 6 | 6 | |||
| 39 | 4 | 3 | |||
| 40 | 2 | 1 |
| 7100<p<7200 | ||||||
| n | nkm | np=n-nkm | p=2np+3 | k | m | nkm=2k²+6k+3+m(2k+3) |
| 3549 | 3549 | 0 | 3 | 0 | 1182 | 3549 |
| 3550 | 3550 | 7103 | 0 | 1183 | 3552 | |
| 3551 | 3551 | 0 | 3 | 0 | 1184 | 3555 |
| 3552 | 3552 | 0 | 3 | 0 | 1185 | 3558 |
| 3553 | 3553 | 7109 | 0 | 1186 | 3561 | |
| 3554 | 3554 | 0 | 3 | 0 | 1187 | 3564 |
| 3555 | 3555 | 0 | 3 | 0 | 1188 | 3567 |
| 3556 | 3556 | 0 | 3 | 0 | 1189 | 3570 |
| 3557 | 3557 | 0 | 3 | 0 | 1190 | 3573 |
| 3558 | 3558 | 0 | 3 | 0 | 1191 | 3576 |
| 3559 | 3559 | 7121 | 0 | 1192 | 3579 | |
| 3560 | 3560 | 0 | 3 | 0 | 1193 | 3582 |
| 3561 | 3561 | 0 | 3 | 0 | 1194 | 3585 |
| 3562 | 3562 | 7127 | 0 | 1195 | 3588 | |
| 3563 | 3563 | 7129 | 0 | 1196 | 3591 | |
| 3564 | 3564 | 0 | 3 | 0 | 1197 | 3594 |
| 3565 | 3565 | 0 | 3 | 0 | 1198 | 3597 |
| 3566 | 3566 | 0 | 3 | 1 | 708 | 3551 |
| 3567 | 3567 | 0 | 3 | 1 | 709 | 3556 |
| 3568 | 3568 | 0 | 3 | 1 | 710 | 3561 |
| 3569 | 3569 | 0 | 3 | 1 | 711 | 3566 |
| 3570 | 3570 | 0 | 3 | 1 | 712 | 3571 |
| 3571 | 3571 | 0 | 3 | 1 | 713 | 3576 |
| 3572 | 3572 | 0 | 3 | 1 | 714 | 3581 |
| 3573 | 3573 | 0 | 3 | 1 | 715 | 3586 |
| 3574 | 3574 | 7151 | 1 | 716 | 3591 | |
| 3575 | 3575 | 0 | 3 | 1 | 717 | 3596 |
| 3576 | 3576 | 0 | 3 | 2 | 504 | 3551 |
| 3577 | 3577 | 0 | 3 | 2 | 505 | 3558 |
| 3578 | 3578 | 7159 | 2 | 506 | 3565 | |
| 3579 | 3579 | 0 | 3 | 2 | 507 | 3572 |
| 3580 | 3580 | 0 | 3 | 2 | 508 | 3579 |
| 3581 | 3581 | 0 | 3 | 2 | 509 | 3586 |
| 3582 | 3582 | 0 | 3 | 2 | 510 | 3593 |
| 3583 | 3583 | 0 | 3 | 3 | 390 | 3549 |
| 3584 | 3584 | 0 | 3 | 3 | 391 | 3558 |
| 3585 | 3585 | 0 | 3 | 3 | 392 | 3567 |
| 3586 | 3586 | 0 | 3 | 3 | 393 | 3576 |
| 3587 | 3587 | 7177 | 3 | 394 | 3585 | |
| 3588 | 3588 | 0 | 3 | 3 | 395 | 3594 |
| 3589 | 3589 | 0 | 3 | 4 | 318 | 3557 |
| 3590 | 3590 | 0 | 3 | 4 | 319 | 3568 |
| 3591 | 3591 | 0 | 3 | 4 | 320 | 3579 |
| 3592 | 3592 | 7187 | 4 | 321 | 3590 | |
| 3593 | 3593 | 0 | 3 | 5 | 267 | 3554 |
| 3594 | 3594 | 0 | 3 | 5 | 268 | 3567 |
| 3595 | 3595 | 7193 | 5 | 269 | 3580 | |
| 3596 | 3596 | 0 | 3 | 5 | 270 | 3593 |
| 3597 | 3597 | 0 | 3 | 6 | 230 | 3561 |
| 3598 | 3598 | 0 | 3 | 6 | 231 | 3576 |
| 6 | 232 | 3591 | ||||
| 7 | 201 | 3560 | ||||
| 7 | 202 | 3577 | ||||
| 7 | 203 | 3594 | ||||
| 8 | 178 | 3561 | ||||
| 8 | 179 | 3580 | ||||
| 9 | 159 | 3558 | ||||
| 9 | 160 | 3579 | ||||
| 10 | 143 | 3552 | ||||
| 10 | 144 | 3575 | ||||
| 10 | 145 | 3598 | ||||
| 11 | 130 | 3561 | ||||
| 11 | 131 | 3586 | ||||
| 12 | 118 | 3549 | ||||
| 12 | 119 | 3576 | ||||
| 13 | 108 | 3551 | ||||
| 13 | 109 | 3580 | ||||
| 14 | 100 | 3579 | ||||
| 15 | 92 | 3579 | ||||
| 16 | 84 | 3551 | ||||
| 16 | 85 | 3586 | ||||
| 17 | 78 | 3569 | ||||
| 18 | 72 | 3567 | ||||
| 19 | 67 | 3586 | ||||
| 20 | 62 | 3589 | ||||
| 21 | 57 | 3576 | ||||
| 22 | 53 | 3594 | ||||
| 23 | 48 | 3551 | ||||
| 24 | 45 | 3594 | ||||
| 25 | 41 | 3576 | ||||
| 26 | 38 | 3601 | ||||
| 27 | 34 | 3561 | ||||
| 28 | 31 | 3568 | ||||
| 29 | 28 | 3567 | ||||
| 30 | 25 | 3558 | ||||
| 31 | 23 | 3606 | ||||
| 32 | 20 | 3583 | ||||
| 33 | 17 | 3552 | ||||
| 34 | 15 | 3584 | ||||
| 35 | 13 | 3612 | ||||
| 36 | 10 | 3561 | ||||
| 37 | 8 | 3579 | ||||
| 38 | 6 | 3593 | ||||
| 39 | 4 | 3603 | ||||
| 40 | 2 | 3609 |
Ergo: The procedure supplies completely all prime numbers (bold type) in the choosen example
between 7100 and 7200.
EXAMPLE 2: It shall be determined all prime numbers >2 and <1000:
| Umin | = | 3 | k | mmin | mmax |
| Umax | = | 999 | 0 | 0 | 165 |
| nmin=⌈(Umin -3)/2⌉ | = | 0 | 1 | 0 | 97 |
| nmax=⌊(Umax -3)/2⌋ | = | 498 | 2 | 0 | 67 |
| kmin | = | 0 | 3 | 0 | 51 |
| kmax=⌊1/2*(-3+√Umax)⌋ | = | 14 | 4 | 0 | 39 |
| mmin=f(k)=⌈(nmin-2k²-6k-3)/(2k+3)⌉ | = | 0 | 5 | 0 | 31 |
| mmax=f(k)=⌊(nmax-2k²-6k-3)/(2k+3)⌋ | 6 | 0 | 25 | ||
| 7 | 0 | 20 | |||
| Legend: | 8 | 0 | 16 | ||
| Umin=smallest odd number in the selected range | 9 | 0 | 13 | ||
| Umax=largest odd number in the selected range | 10 | 0 | 10 | ||
| 11 | 0 | 7 | |||
| 12 | 0 | 5 | |||
| 13 | 0 | 2 | |||
| 14 | 0 | 0 |
| 2<p<1000 | ||||||
| n | nkm | np=n-nkm | p=2np+3 | k | m | nt km=2k²+6k+3+m(2k+3) |
| 0 | 0 | 3 | 0 | 0 | 3 | |
| 1 | 1 | 5 | 0 | 1 | 6 | |
| 2 | 2 | 7 | 0 | 2 | 9 | |
| 3 | 3 | 0 | 3 | 0 | 3 | 12 |
| 4 | 4 | 11 | 0 | 4 | 15 | |
| 5 | 5 | 13 | 0 | 5 | 18 | |
| 6 | 6 | 0 | 3 | 0 | 6 | 21 |
| 7 | 7 | 17 | 0 | 7 | 24 | |
| 8 | 8 | 19 | 0 | 8 | 27 | |
| 9 | 9 | 0 | 3 | 0 | 9 | 30 |
| 10 | 10 | 23 | 0 | 10 | 33 | |
| 11 | 11 | 0 | 3 | 0 | 11 | 36 |
| 12 | 12 | 0 | 3 | 0 | 12 | 39 |
| 13 | 13 | 29 | 0 | 13 | 42 | |
| 14 | 14 | 31 | 0 | 14 | 45 | |
| 15 | 15 | 0 | 3 | 0 | 15 | 48 |
| 16 | 16 | 0 | 3 | 0 | 16 | 51 |
| 17 | 17 | 37 | 0 | 17 | 54 | |
| 18 | 18 | 0 | 3 | 0 | 18 | 57 |
| 19 | 19 | 41 | 0 | 19 | 60 | |
| 20 | 20 | 43 | 0 | 20 | 63 | |
| 21 | 21 | 0 | 3 | 0 | 21 | 66 |
| 22 | 22 | 47 | 0 | 22 | 69 | |
| 23 | 23 | 0 | 3 | 0 | 23 | 72 |
| 24 | 24 | 0 | 3 | 0 | 24 | 75 |
| 25 | 25 | 53 | 0 | 25 | 78 | |
| 26 | 26 | 0 | 3 | 0 | 26 | 81 |
| 27 | 27 | 0 | 3 | 0 | 27 | 84 |
| 28 | 28 | 59 | 0 | 28 | 87 | |
| 29 | 29 | 61 | 0 | 29 | 90 | |
| 30 | 30 | 0 | 3 | 0 | 30 | 93 |
| 31 | 31 | 0 | 3 | 0 | 31 | 96 |
| 32 | 32 | 67 | 0 | 32 | 99 | |
| 33 | 33 | 0 | 3 | 0 | 33 | 102 |
| 34 | 34 | 71 | 0 | 34 | 105 | |
| 35 | 35 | 73 | 0 | 35 | 108 | |
| 36 | 36 | 0 | 3 | 0 | 36 | 111 |
| 37 | 37 | 0 | 3 | 0 | 37 | 114 |
| 38 | 38 | 79 | 0 | 38 | 117 | |
| 39 | 39 | 0 | 3 | 0 | 39 | 120 |
| 40 | 40 | 83 | 0 | 40 | 123 | |
| 41 | 41 | 0 | 3 | 0 | 41 | 126 |
| 42 | 42 | 0 | 3 | 0 | 42 | 129 |
| 43 | 43 | 89 | 0 | 43 | 132 | |
| 44 | 44 | 0 | 3 | 0 | 44 | 135 |
| 45 | 45 | 0 | 3 | 0 | 45 | 138 |
| 46 | 46 | 0 | 3 | 0 | 46 | 141 |
| 47 | 47 | 97 | 0 | 47 | 144 | |
| 48 | 48 | 0 | 3 | 0 | 48 | 147 |
| 49 | 49 | 101 | 0 | 49 | 150 | |
| 50 | 50 | 103 | 0 | 50 | 153 | |
| 51 | 51 | 0 | 3 | 0 | 51 | 156 |
| 52 | 52 | 107 | 0 | 52 | 159 | |
| 53 | 53 | 109 | 0 | 53 | 162 | |
| 54 | 54 | 0 | 3 | 0 | 54 | 165 |
| 55 | 55 | 113 | 0 | 55 | 168 | |
| 56 | 56 | 0 | 3 | 0 | 56 | 171 |
| 57 | 57 | 0 | 3 | 0 | 57 | 174 |
| 58 | 58 | 0 | 3 | 0 | 58 | 177 |
| 59 | 59 | 0 | 3 | 0 | 59 | 180 |
| 60 | 60 | 0 | 3 | 0 | 60 | 183 |
| 61 | 61 | 0 | 3 | 0 | 61 | 186 |
| 62 | 62 | 127 | 0 | 62 | 189 | |
| 63 | 63 | 0 | 3 | 0 | 63 | 192 |
| 64 | 64 | 131 | 0 | 64 | 195 | |
| 65 | 65 | 0 | 3 | 0 | 65 | 198 |
| 66 | 66 | 0 | 3 | 0 | 66 | 201 |
| 67 | 67 | 137 | 0 | 67 | 204 | |
| 68 | 68 | 139 | 0 | 68 | 207 | |
| 69 | 69 | 0 | 3 | 0 | 69 | 210 |
| 70 | 70 | 0 | 3 | 0 | 70 | 213 |
| 71 | 71 | 0 | 3 | 0 | 71 | 216 |
| 72 | 72 | 0 | 3 | 0 | 72 | 219 |
| 73 | 73 | 149 | 0 | 73 | 222 | |
| 74 | 74 | 151 | 0 | 74 | 225 | |
| 75 | 75 | 0 | 3 | 0 | 75 | 228 |
| 76 | 76 | 0 | 3 | 0 | 76 | 231 |
| 77 | 77 | 157 | 0 | 77 | 234 | |
| 78 | 78 | 0 | 3 | 0 | 78 | 237 |
| 79 | 79 | 0 | 3 | 0 | 79 | 240 |
| 80 | 80 | 163 | 0 | 80 | 243 | |
| 81 | 81 | 0 | 3 | 0 | 81 | 246 |
| 82 | 82 | 167 | 0 | 82 | 249 | |
| 83 | 83 | 0 | 3 | 0 | 83 | 252 |
| 84 | 84 | 0 | 3 | 0 | 84 | 255 |
| 85 | 85 | 173 | 0 | 85 | 258 | |
| 86 | 86 | 0 | 3 | 0 | 86 | 261 |
| 87 | 87 | 0 | 3 | 0 | 87 | 264 |
| 88 | 88 | 179 | 0 | 88 | 267 | |
| 89 | 89 | 181 | 0 | 89 | 270 | |
| 90 | 90 | 0 | 3 | 0 | 90 | 273 |
| 91 | 91 | 0 | 3 | 0 | 91 | 276 |
| 92 | 92 | 0 | 3 | 0 | 92 | 279 |
| 93 | 93 | 0 | 3 | 0 | 93 | 282 |
| 94 | 94 | 191 | 0 | 94 | 285 | |
| 95 | 95 | 193 | 0 | 95 | 288 | |
| 96 | 96 | 0 | 3 | 0 | 96 | 291 |
| 97 | 97 | 197 | 0 | 97 | 294 | |
| 98 | 98 | 199 | 0 | 98 | 297 | |
| 99 | 99 | 0 | 3 | 0 | 99 | 300 |
| 100 | 100 | 0 | 3 | 0 | 100 | 303 |
| 101 | 101 | 0 | 3 | 0 | 101 | 306 |
| 102 | 102 | 0 | 3 | 0 | 102 | 309 |
| 103 | 103 | 0 | 3 | 0 | 103 | 312 |
| 104 | 104 | 211 | 0 | 104 | 315 | |
| 105 | 105 | 0 | 3 | 0 | 105 | 318 |
| 106 | 106 | 0 | 3 | 0 | 106 | 321 |
| 107 | 107 | 0 | 3 | 0 | 107 | 324 |
| 108 | 108 | 0 | 3 | 0 | 108 | 327 |
| 109 | 109 | 0 | 3 | 0 | 109 | 330 |
| 110 | 110 | 223 | 0 | 110 | 333 | |
| 111 | 111 | 0 | 3 | 0 | 111 | 336 |
| 112 | 112 | 227 | 0 | 112 | 339 | |
| 113 | 113 | 229 | 0 | 113 | 342 | |
| 114 | 114 | 0 | 3 | 0 | 114 | 345 |
| 115 | 115 | 233 | 0 | 115 | 348 | |
| 116 | 116 | 0 | 3 | 0 | 116 | 351 |
| 117 | 117 | 0 | 3 | 0 | 117 | 354 |
| 118 | 118 | 239 | 0 | 118 | 357 | |
| 119 | 119 | 241 | 0 | 119 | 360 | |
| 120 | 120 | 0 | 3 | 0 | 120 | 363 |
| 121 | 121 | 0 | 3 | 0 | 121 | 366 |
| 122 | 122 | 0 | 3 | 0 | 122 | 369 |
| 123 | 123 | 0 | 3 | 0 | 123 | 372 |
| 124 | 124 | 251 | 0 | 124 | 375 | |
| 125 | 125 | 0 | 3 | 0 | 125 | 378 |
| 126 | 126 | 0 | 3 | 0 | 126 | 381 |
| 127 | 127 | 257 | 0 | 127 | 384 | |
| 128 | 128 | 0 | 3 | 0 | 128 | 387 |
| 129 | 129 | 0 | 3 | 0 | 129 | 390 |
| 130 | 130 | 263 | 0 | 130 | 393 | |
| 131 | 131 | 0 | 3 | 0 | 131 | 396 |
| 132 | 132 | 0 | 3 | 0 | 132 | 399 |
| 133 | 133 | 269 | 0 | 133 | 402 | |
| 134 | 134 | 271 | 0 | 134 | 405 | |
| 135 | 135 | 0 | 3 | 0 | 135 | 408 |
| 136 | 136 | 0 | 3 | 0 | 136 | 411 |
| 137 | 137 | 277 | 0 | 137 | 414 | |
| 138 | 138 | 0 | 3 | 0 | 138 | 417 |
| 139 | 139 | 281 | 0 | 139 | 420 | |
| 140 | 140 | 283 | 0 | 140 | 423 | |
| 141 | 141 | 0 | 3 | 0 | 141 | 426 |
| 142 | 142 | 0 | 3 | 0 | 142 | 429 |
| 143 | 143 | 0 | 3 | 0 | 143 | 432 |
| 144 | 144 | 0 | 3 | 0 | 144 | 435 |
| 145 | 145 | 293 | 0 | 145 | 438 | |
| 146 | 146 | 0 | 3 | 0 | 146 | 441 |
| 147 | 147 | 0 | 3 | 0 | 147 | 444 |
| 148 | 148 | 0 | 3 | 0 | 148 | 447 |
| 149 | 149 | 0 | 3 | 0 | 149 | 450 |
| 150 | 150 | 0 | 3 | 0 | 150 | 453 |
| 151 | 151 | 0 | 3 | 0 | 151 | 456 |
| 152 | 152 | 307 | 0 | 152 | 459 | |
| 153 | 153 | 0 | 3 | 0 | 153 | 462 |
| 154 | 154 | 311 | 0 | 154 | 465 | |
| 155 | 155 | 313 | 0 | 155 | 468 | |
| 156 | 156 | 0 | 3 | 0 | 156 | 471 |
| 157 | 157 | 317 | 0 | 157 | 474 | |
| 158 | 158 | 0 | 3 | 0 | 158 | 477 |
| 159 | 159 | 0 | 3 | 0 | 159 | 480 |
| 160 | 160 | 0 | 3 | 0 | 160 | 483 |
| 161 | 161 | 0 | 3 | 0 | 161 | 486 |
| 162 | 162 | 0 | 3 | 0 | 162 | 489 |
| 163 | 163 | 0 | 3 | 0 | 163 | 492 |
| 164 | 164 | 331 | 0 | 164 | 495 | |
| 165 | 165 | 0 | 3 | 0 | 165 | 498 |
| 166 | 166 | 0 | 3 | 1 | 0 | 11 |
| 167 | 167 | 337 | 1 | 1 | 16 | |
| 168 | 168 | 0 | 3 | 1 | 2 | 21 |
| 169 | 169 | 0 | 3 | 1 | 3 | 26 |
| 170 | 170 | 0 | 3 | 1 | 4 | 31 |
| 171 | 171 | 0 | 3 | 1 | 5 | 36 |
| 172 | 172 | 347 | 1 | 6 | 41 | |
| 173 | 173 | 349 | 1 | 7 | 46 | |
| 174 | 174 | 0 | 3 | 1 | 8 | 51 |
| 175 | 175 | 353 | 1 | 9 | 56 | |
| 176 | 176 | 0 | 3 | 1 | 10 | 61 |
| 177 | 177 | 0 | 3 | 1 | 11 | 66 |
| 178 | 178 | 359 | 1 | 12 | 71 | |
| 179 | 179 | 0 | 3 | 1 | 13 | 76 |
| 180 | 180 | 0 | 3 | 1 | 14 | 81 |
| 181 | 181 | 0 | 3 | 1 | 15 | 86 |
| 182 | 182 | 367 | 1 | 16 | 91 | |
| 183 | 183 | 0 | 3 | 1 | 17 | 96 |
| 184 | 184 | 0 | 3 | 1 | 18 | 101 |
| 185 | 185 | 373 | 1 | 19 | 106 | |
| 186 | 186 | 0 | 3 | 1 | 20 | 111 |
| 187 | 187 | 0 | 3 | 1 | 21 | 116 |
| 188 | 188 | 379 | 1 | 22 | 121 | |
| 189 | 189 | 0 | 3 | 1 | 23 | 126 |
| 190 | 190 | 383 | 1 | 24 | 131 | |
| 191 | 191 | 0 | 3 | 1 | 25 | 136 |
| 192 | 192 | 0 | 3 | 1 | 26 | 141 |
| 193 | 193 | 389 | 1 | 27 | 146 | |
| 194 | 194 | 0 | 3 | 1 | 28 | 151 |
| 195 | 195 | 0 | 3 | 1 | 29 | 156 |
| 196 | 196 | 0 | 3 | 1 | 30 | 161 |
| 197 | 197 | 397 | 1 | 31 | 166 | |
| 198 | 198 | 0 | 3 | 1 | 32 | 171 |
| 199 | 199 | 401 | 1 | 33 | 176 | |
| 200 | 200 | 0 | 3 | 1 | 34 | 181 |
| 201 | 201 | 0 | 3 | 1 | 35 | 186 |
| 202 | 202 | 0 | 3 | 1 | 36 | 191 |
| 203 | 203 | 409 | 1 | 37 | 196 | |
| 204 | 204 | 0 | 3 | 1 | 38 | 201 |
| 205 | 205 | 0 | 3 | 1 | 39 | 206 |
| 206 | 206 | 0 | 3 | 1 | 40 | 211 |
| 207 | 207 | 0 | 3 | 1 | 41 | 216 |
| 208 | 208 | 419 | 1 | 42 | 221 | |
| 209 | 209 | 421 | 1 | 43 | 226 | |
| 210 | 210 | 0 | 3 | 1 | 44 | 231 |
| 211 | 211 | 0 | 3 | 1 | 45 | 236 |
| 212 | 212 | 0 | 3 | 1 | 46 | 241 |
| 213 | 213 | 0 | 3 | 1 | 47 | 246 |
| 214 | 214 | 431 | 1 | 48 | 251 | |
| 215 | 215 | 433 | 1 | 49 | 256 | |
| 216 | 216 | 0 | 3 | 1 | 50 | 261 |
| 217 | 217 | 0 | 3 | 1 | 51 | 266 |
| 218 | 218 | 439 | 1 | 52 | 271 | |
| 219 | 219 | 0 | 3 | 1 | 53 | 276 |
| 220 | 220 | 443 | 1 | 54 | 281 | |
| 221 | 221 | 0 | 3 | 1 | 55 | 286 |
| 222 | 222 | 0 | 3 | 1 | 56 | 291 |
| 223 | 223 | 449 | 1 | 57 | 296 | |
| 224 | 224 | 0 | 3 | 1 | 58 | 301 |
| 225 | 225 | 0 | 3 | 1 | 59 | 306 |
| 226 | 226 | 0 | 3 | 1 | 60 | 311 |
| 227 | 227 | 457 | 1 | 61 | 316 | |
| 228 | 228 | 0 | 3 | 1 | 62 | 321 |
| 229 | 229 | 461 | 1 | 63 | 326 | |
| 230 | 230 | 463 | 1 | 64 | 331 | |
| 231 | 231 | 0 | 3 | 1 | 65 | 336 |
| 232 | 232 | 467 | 1 | 66 | 341 | |
| 233 | 233 | 0 | 3 | 1 | 67 | 346 |
| 234 | 234 | 0 | 3 | 1 | 68 | 351 |
| 235 | 235 | 0 | 3 | 1 | 69 | 356 |
| 236 | 236 | 0 | 3 | 1 | 70 | 361 |
| 237 | 237 | 0 | 3 | 1 | 71 | 366 |
| 238 | 238 | 479 | 1 | 72 | 371 | |
| 239 | 239 | 0 | 3 | 1 | 73 | 376 |
| 240 | 240 | 0 | 3 | 1 | 74 | 381 |
| 241 | 241 | 0 | 3 | 1 | 75 | 386 |
| 242 | 242 | 487 | 1 | 76 | 391 | |
| 243 | 243 | 0 | 3 | 1 | 77 | 396 |
| 244 | 244 | 491 | 1 | 78 | 401 | |
| 245 | 245 | 0 | 3 | 1 | 79 | 406 |
| 246 | 246 | 0 | 3 | 1 | 80 | 411 |
| 247 | 247 | 0 | 3 | 1 | 81 | 416 |
| 248 | 248 | 499 | 1 | 82 | 421 | |
| 249 | 249 | 0 | 3 | 1 | 83 | 426 |
| 250 | 250 | 503 | 1 | 84 | 431 | |
| 251 | 251 | 0 | 3 | 1 | 85 | 436 |
| 252 | 252 | 0 | 3 | 1 | 86 | 441 |
| 253 | 253 | 509 | 1 | 87 | 446 | |
| 254 | 254 | 0 | 3 | 1 | 88 | 451 |
| 255 | 255 | 0 | 3 | 1 | 89 | 456 |
| 256 | 256 | 0 | 3 | 1 | 90 | 461 |
| 257 | 257 | 0 | 3 | 1 | 91 | 466 |
| 258 | 258 | 0 | 3 | 1 | 92 | 471 |
| 259 | 259 | 521 | 1 | 93 | 476 | |
| 260 | 260 | 523 | 1 | 94 | 481 | |
| 261 | 261 | 0 | 3 | 1 | 95 | 486 |
| 262 | 262 | 0 | 3 | 1 | 96 | 491 |
| 263 | 263 | 0 | 3 | 1 | 97 | 496 |
| 264 | 264 | 0 | 3 | 2 | 0 | 23 |
| 265 | 265 | 0 | 3 | 2 | 1 | 30 |
| 266 | 266 | 0 | 3 | 2 | 2 | 37 |
| 267 | 267 | 0 | 3 | 2 | 3 | 44 |
| 268 | 268 | 0 | 3 | 2 | 4 | 51 |
| 269 | 269 | 541 | 2 | 5 | 58 | |
| 270 | 270 | 0 | 3 | 2 | 6 | 65 |
| 271 | 271 | 0 | 3 | 2 | 7 | 72 |
| 272 | 272 | 547 | 2 | 8 | 79 | |
| 273 | 273 | 0 | 3 | 2 | 9 | 86 |
| 274 | 274 | 0 | 3 | 2 | 10 | 93 |
| 275 | 275 | 0 | 3 | 2 | 11 | 100 |
| 276 | 276 | 0 | 3 | 2 | 12 | 107 |
| 277 | 277 | 557 | 2 | 13 | 114 | |
| 278 | 278 | 0 | 3 | 2 | 14 | 121 |
| 279 | 279 | 0 | 3 | 2 | 15 | 128 |
| 280 | 280 | 563 | 2 | 16 | 135 | |
| 281 | 281 | 0 | 3 | 2 | 17 | 142 |
| 282 | 282 | 0 | 3 | 2 | 18 | 149 |
| 283 | 283 | 569 | 2 | 19 | 156 | |
| 284 | 284 | 571 | 2 | 20 | 163 | |
| 285 | 285 | 0 | 3 | 2 | 21 | 170 |
| 286 | 286 | 0 | 3 | 2 | 22 | 177 |
| 287 | 287 | 577 | 2 | 23 | 184 | |
| 288 | 288 | 0 | 3 | 2 | 24 | 191 |
| 289 | 289 | 0 | 3 | 2 | 25 | 198 |
| 290 | 290 | 0 | 3 | 2 | 26 | 205 |
| 291 | 291 | 0 | 3 | 2 | 27 | 212 |
| 292 | 292 | 587 | 2 | 28 | 219 | |
| 293 | 293 | 0 | 3 | 2 | 29 | 226 |
| 294 | 294 | 0 | 3 | 2 | 30 | 233 |
| 295 | 295 | 593 | 2 | 31 | 240 | |
| 296 | 296 | 0 | 3 | 2 | 32 | 247 |
| 297 | 297 | 0 | 3 | 2 | 33 | 254 |
| 298 | 298 | 599 | 2 | 34 | 261 | |
| 299 | 299 | 601 | 2 | 35 | 268 | |
| 300 | 300 | 0 | 3 | 2 | 36 | 275 |
| 301 | 301 | 0 | 3 | 2 | 37 | 282 |
| 302 | 302 | 607 | 2 | 38 | 289 | |
| 303 | 303 | 0 | 3 | 2 | 39 | 296 |
| 304 | 304 | 0 | 3 | 2 | 40 | 303 |
| 305 | 305 | 613 | 2 | 41 | 310 | |
| 306 | 306 | 0 | 3 | 2 | 42 | 317 |
| 307 | 307 | 617 | 2 | 43 | 324 | |
| 308 | 308 | 619 | 2 | 44 | 331 | |
| 309 | 309 | 0 | 3 | 2 | 45 | 338 |
| 310 | 310 | 0 | 3 | 2 | 46 | 345 |
| 311 | 311 | 0 | 3 | 2 | 47 | 352 |
| 312 | 312 | 0 | 3 | 2 | 48 | 359 |
| 313 | 313 | 0 | 3 | 2 | 49 | 366 |
| 314 | 314 | 631 | 2 | 50 | 373 | |
| 315 | 315 | 0 | 3 | 2 | 51 | 380 |
| 316 | 316 | 0 | 3 | 2 | 52 | 387 |
| 317 | 317 | 0 | 3 | 2 | 53 | 394 |
| 318 | 318 | 0 | 3 | 2 | 54 | 401 |
| 319 | 319 | 641 | 2 | 55 | 408 | |
| 320 | 320 | 643 | 2 | 56 | 415 | |
| 321 | 321 | 0 | 3 | 2 | 57 | 422 |
| 322 | 322 | 647 | 2 | 58 | 429 | |
| 323 | 323 | 0 | 3 | 2 | 59 | 436 |
| 324 | 324 | 0 | 3 | 2 | 60 | 443 |
| 325 | 325 | 653 | 2 | 61 | 450 | |
| 326 | 326 | 0 | 3 | 2 | 62 | 457 |
| 327 | 327 | 0 | 3 | 2 | 63 | 464 |
| 328 | 328 | 659 | 2 | 64 | 471 | |
| 329 | 329 | 661 | 2 | 65 | 478 | |
| 330 | 330 | 0 | 3 | 2 | 66 | 485 |
| 331 | 331 | 0 | 3 | 2 | 67 | 492 |
| 332 | 332 | 0 | 3 | 3 | 0 | 39 |
| 333 | 333 | 0 | 3 | 3 | 1 | 48 |
| 334 | 334 | 0 | 3 | 3 | 2 | 57 |
| 335 | 335 | 673 | 3 | 3 | 66 | |
| 336 | 336 | 0 | 3 | 3 | 4 | 75 |
| 337 | 337 | 677 | 3 | 5 | 84 | |
| 338 | 338 | 0 | 3 | 3 | 6 | 93 |
| 339 | 339 | 0 | 3 | 3 | 7 | 102 |
| 340 | 340 | 683 | 3 | 8 | 111 | |
| 341 | 341 | 0 | 3 | 3 | 9 | 120 |
| 342 | 342 | 0 | 3 | 3 | 10 | 129 |
| 343 | 343 | 0 | 3 | 3 | 11 | 138 |
| 344 | 344 | 691 | 3 | 12 | 147 | |
| 345 | 345 | 0 | 3 | 3 | 13 | 156 |
| 346 | 346 | 0 | 3 | 3 | 14 | 165 |
| 347 | 347 | 0 | 3 | 3 | 15 | 174 |
| 348 | 348 | 0 | 3 | 3 | 16 | 183 |
| 349 | 349 | 701 | 3 | 17 | 192 | |
| 350 | 350 | 0 | 3 | 3 | 18 | 201 |
| 351 | 351 | 0 | 3 | 3 | 19 | 210 |
| 352 | 352 | 0 | 3 | 3 | 20 | 219 |
| 353 | 353 | 709 | 3 | 21 | 228 | |
| 354 | 354 | 0 | 3 | 3 | 22 | 237 |
| 355 | 355 | 0 | 3 | 3 | 23 | 246 |
| 356 | 356 | 0 | 3 | 3 | 24 | 255 |
| 357 | 357 | 0 | 3 | 3 | 25 | 264 |
| 358 | 358 | 719 | 3 | 26 | 273 | |
| 359 | 359 | 0 | 3 | 3 | 27 | 282 |
| 360 | 360 | 0 | 3 | 3 | 28 | 291 |
| 361 | 361 | 0 | 3 | 3 | 29 | 300 |
| 362 | 362 | 727 | 3 | 30 | 309 | |
| 363 | 363 | 0 | 3 | 3 | 31 | 318 |
| 364 | 364 | 0 | 3 | 3 | 32 | 327 |
| 365 | 365 | 733 | 3 | 33 | 336 | |
| 366 | 366 | 0 | 3 | 3 | 34 | 345 |
| 367 | 367 | 0 | 3 | 3 | 35 | 354 |
| 368 | 368 | 739 | 3 | 36 | 363 | |
| 369 | 369 | 0 | 3 | 3 | 37 | 372 |
| 370 | 370 | 743 | 3 | 38 | 381 | |
| 371 | 371 | 0 | 3 | 3 | 39 | 390 |
| 372 | 372 | 0 | 3 | 3 | 40 | 399 |
| 373 | 373 | 0 | 3 | 3 | 41 | 408 |
| 374 | 374 | 751 | 3 | 42 | 417 | |
| 375 | 375 | 0 | 3 | 3 | 43 | 426 |
| 376 | 376 | 0 | 3 | 3 | 44 | 435 |
| 377 | 377 | 757 | 3 | 45 | 444 | |
| 378 | 378 | 0 | 3 | 3 | 46 | 453 |
| 379 | 379 | 761 | 3 | 47 | 462 | |
| 380 | 380 | 0 | 3 | 3 | 48 | 471 |
| 381 | 381 | 0 | 3 | 3 | 49 | 480 |
| 382 | 382 | 0 | 3 | 3 | 50 | 489 |
| 383 | 383 | 769 | 3 | 51 | 498 | |
| 384 | 384 | 0 | 3 | 4 | 0 | 59 |
| 385 | 385 | 773 | 4 | 1 | 70 | |
| 386 | 386 | 0 | 3 | 4 | 2 | 81 |
| 387 | 387 | 0 | 3 | 4 | 3 | 92 |
| 388 | 388 | 0 | 3 | 4 | 4 | 103 |
| 389 | 389 | 0 | 3 | 4 | 5 | 114 |
| 390 | 390 | 0 | 3 | 4 | 6 | 125 |
| 391 | 391 | 0 | 3 | 4 | 7 | 136 |
| 392 | 392 | 787 | 4 | 8 | 147 | |
| 393 | 393 | 0 | 3 | 4 | 9 | 158 |
| 394 | 394 | 0 | 3 | 4 | 10 | 169 |
| 395 | 395 | 0 | 3 | 4 | 11 | 180 |
| 396 | 396 | 0 | 3 | 4 | 12 | 191 |
| 397 | 397 | 797 | 4 | 13 | 202 | |
| 398 | 398 | 0 | 3 | 4 | 14 | 213 |
| 399 | 399 | 0 | 3 | 4 | 15 | 224 |
| 400 | 400 | 0 | 3 | 4 | 16 | 235 |
| 401 | 401 | 0 | 3 | 4 | 17 | 246 |
| 402 | 402 | 0 | 3 | 4 | 18 | 257 |
| 403 | 403 | 809 | 4 | 19 | 268 | |
| 404 | 404 | 811 | 4 | 20 | 279 | |
| 405 | 405 | 0 | 3 | 4 | 21 | 290 |
| 406 | 406 | 0 | 3 | 4 | 22 | 301 |
| 407 | 407 | 0 | 3 | 4 | 23 | 312 |
| 408 | 408 | 0 | 3 | 4 | 24 | 323 |
| 409 | 409 | 821 | 4 | 25 | 334 | |
| 410 | 410 | 823 | 4 | 26 | 345 | |
| 411 | 411 | 0 | 3 | 4 | 27 | 356 |
| 412 | 412 | 827 | 4 | 28 | 367 | |
| 413 | 413 | 829 | 4 | 29 | 378 | |
| 414 | 414 | 0 | 3 | 4 | 30 | 389 |
| 415 | 415 | 0 | 3 | 4 | 31 | 400 |
| 416 | 416 | 0 | 3 | 4 | 32 | 411 |
| 417 | 417 | 0 | 3 | 4 | 33 | 422 |
| 418 | 418 | 839 | 4 | 34 | 433 | |
| 419 | 419 | 0 | 3 | 4 | 35 | 444 |
| 420 | 420 | 0 | 3 | 4 | 36 | 455 |
| 421 | 421 | 0 | 3 | 4 | 37 | 466 |
| 422 | 422 | 0 | 3 | 4 | 38 | 477 |
| 423 | 423 | 0 | 3 | 4 | 39 | 488 |
| 424 | 424 | 0 | 3 | 5 | 0 | 83 |
| 425 | 425 | 853 | 5 | 1 | 96 | |
| 426 | 426 | 0 | 3 | 5 | 2 | 109 |
| 427 | 427 | 857 | 5 | 3 | 122 | |
| 428 | 428 | 859 | 5 | 4 | 135 | |
| 429 | 429 | 0 | 3 | 5 | 5 | 148 |
| 430 | 430 | 863 | 5 | 6 | 161 | |
| 431 | 431 | 0 | 3 | 5 | 7 | 174 |
| 432 | 432 | 0 | 3 | 5 | 8 | 187 |
| 433 | 433 | 0 | 3 | 5 | 9 | 200 |
| 434 | 434 | 0 | 3 | 5 | 10 | 213 |
| 435 | 435 | 0 | 3 | 5 | 11 | 226 |
| 436 | 436 | 0 | 3 | 5 | 12 | 239 |
| 437 | 437 | 877 | 5 | 13 | 252 | |
| 438 | 438 | 0 | 3 | 5 | 14 | 265 |
| 439 | 439 | 881 | 5 | 15 | 278 | |
| 440 | 440 | 883 | 5 | 16 | 291 | |
| 441 | 441 | 0 | 3 | 5 | 17 | 304 |
| 442 | 442 | 887 | 5 | 18 | 317 | |
| 443 | 443 | 0 | 3 | 5 | 19 | 330 |
| 444 | 444 | 0 | 3 | 5 | 20 | 343 |
| 445 | 445 | 0 | 3 | 5 | 21 | 356 |
| 446 | 446 | 0 | 3 | 5 | 22 | 369 |
| 447 | 447 | 0 | 3 | 5 | 23 | 382 |
| 448 | 448 | 0 | 3 | 5 | 24 | 395 |
| 449 | 449 | 0 | 3 | 5 | 25 | 408 |
| 450 | 450 | 0 | 3 | 5 | 26 | 421 |
| 451 | 451 | 0 | 3 | 5 | 27 | 434 |
| 452 | 452 | 907 | 5 | 28 | 447 | |
| 453 | 453 | 0 | 3 | 5 | 29 | 460 |
| 454 | 454 | 911 | 5 | 30 | 473 | |
| 455 | 455 | 0 | 3 | 5 | 31 | 486 |
| 456 | 456 | 0 | 3 | 6 | 0 | 111 |
| 457 | 457 | 0 | 3 | 6 | 1 | 126 |
| 458 | 458 | 919 | 6 | 2 | 141 | |
| 459 | 459 | 0 | 3 | 6 | 3 | 156 |
| 460 | 460 | 0 | 3 | 6 | 4 | 171 |
| 461 | 461 | 0 | 3 | 6 | 5 | 186 |
| 462 | 462 | 0 | 3 | 6 | 6 | 201 |
| 463 | 463 | 929 | 6 | 7 | 216 | |
| 464 | 464 | 0 | 3 | 6 | 8 | 231 |
| 465 | 465 | 0 | 3 | 6 | 9 | 246 |
| 466 | 466 | 0 | 3 | 6 | 10 | 261 |
| 467 | 467 | 937 | 6 | 11 | 276 | |
| 468 | 468 | 0 | 3 | 6 | 12 | 291 |
| 469 | 469 | 941 | 6 | 13 | 306 | |
| 470 | 470 | 0 | 3 | 6 | 14 | 321 |
| 471 | 471 | 0 | 3 | 6 | 15 | 336 |
| 472 | 472 | 947 | 6 | 16 | 351 | |
| 473 | 473 | 0 | 3 | 6 | 17 | 366 |
| 474 | 474 | 0 | 3 | 6 | 18 | 381 |
| 475 | 475 | 953 | 6 | 19 | 396 | |
| 476 | 476 | 0 | 3 | 6 | 20 | 411 |
| 477 | 477 | 0 | 3 | 6 | 21 | 426 |
| 478 | 478 | 0 | 3 | 6 | 22 | 441 |
| 479 | 479 | 0 | 3 | 6 | 23 | 456 |
| 480 | 480 | 0 | 3 | 6 | 24 | 471 |
| 481 | 481 | 0 | 3 | 6 | 25 | 486 |
| 482 | 482 | 967 | 7 | 0 | 143 | |
| 483 | 483 | 0 | 3 | 7 | 1 | 160 |
| 484 | 484 | 971 | 7 | 2 | 177 | |
| 485 | 485 | 0 | 3 | 7 | 3 | 194 |
| 486 | 486 | 0 | 3 | 7 | 4 | 211 |
| 487 | 487 | 977 | 7 | 5 | 228 | |
| 488 | 488 | 0 | 3 | 7 | 6 | 245 |
| 489 | 489 | 0 | 3 | 7 | 7 | 262 |
| 490 | 490 | 983 | 7 | 8 | 279 | |
| 491 | 491 | 0 | 3 | 7 | 9 | 296 |
| 492 | 492 | 0 | 3 | 7 | 10 | 313 |
| 493 | 493 | 0 | 3 | 7 | 11 | 330 |
| 494 | 494 | 991 | 7 | 12 | 347 | |
| 495 | 495 | 0 | 3 | 7 | 13 | 364 |
| 496 | 496 | 0 | 3 | 7 | 14 | 381 |
| 497 | 497 | 997 | 7 | 15 | 398 | |
| 498 | 498 | 0 | 3 | 7 | 16 | 415 |
| 7 | 17 | 432 | ||||
| 7 | 18 | 449 | ||||
| 7 | 19 | 466 | ||||
| 7 | 20 | 483 | ||||
| 8 | 0 | 179 | ||||
| 8 | 1 | 198 | ||||
| 8 | 2 | 217 | ||||
| 8 | 3 | 236 | ||||
| 8 | 4 | 255 | ||||
| 8 | 5 | 274 | ||||
| 8 | 6 | 293 | ||||
| 8 | 7 | 312 | ||||
| 8 | 8 | 331 | ||||
| 8 | 9 | 350 | ||||
| 8 | 10 | 369 | ||||
| 8 | 11 | 388 | ||||
| 8 | 12 | 407 | ||||
| 8 | 13 | 426 | ||||
| 8 | 14 | 445 | ||||
| 8 | 15 | 464 | ||||
| 8 | 16 | 483 | ||||
| 9 | 0 | 219 | ||||
| 9 | 1 | 240 | ||||
| 9 | 2 | 261 | ||||
| 9 | 3 | 282 | ||||
| 9 | 4 | 303 | ||||
| 9 | 5 | 324 | ||||
| 9 | 6 | 345 | ||||
| 9 | 7 | 366 | ||||
| 9 | 8 | 387 | ||||
| 9 | 9 | 408 | ||||
| 9 | 10 | 429 | ||||
| 9 | 11 | 450 | ||||
| 9 | 12 | 471 | ||||
| 9 | 13 | 492 | ||||
| 10 | 0 | 263 | ||||
| 10 | 1 | 286 | ||||
| 10 | 2 | 309 | ||||
| 10 | 3 | 332 | ||||
| 10 | 4 | 355 | ||||
| 10 | 5 | 378 | ||||
| 10 | 6 | 401 | ||||
| 10 | 7 | 424 | ||||
| 10 | 8 | 447 | ||||
| 10 | 9 | 470 | ||||
| 10 | 10 | 493 | ||||
| 11 | 0 | 311 | ||||
| 11 | 1 | 336 | ||||
| 11 | 2 | 361 | ||||
| 11 | 3 | 386 | ||||
| 11 | 4 | 411 | ||||
| 11 | 5 | 436 | ||||
| 11 | 6 | 461 | ||||
| 11 | 7 | 486 | ||||
| 12 | 0 | 363 | ||||
| 12 | 1 | 390 | ||||
| 12 | 2 | 417 | ||||
| 12 | 3 | 444 | ||||
| 12 | 4 | 471 | ||||
| 12 | 5 | 498 | ||||
| 13 | 0 | 419 | ||||
| 13 | 1 | 448 | ||||
| 13 | 2 | 477 | ||||
| 14 | 0 | 479 |
Ergo: The procedure supplies completely all prime numbers (bold type) in the choosen example
>2 and <1000.
Munich, 7 August 2019
Gottfried Färberböck

