The determination of all prime numbers in a selected range with the n-method

PRIME NUMBER SERIES 6

The determination of all prime numbers in a selected range with the n-method

 

The n-method is based on premise (1) and the set operations (2) to (5):

(1) 2 is the smallest and the one and only even prime number.

(2)\mathbb{P} \ {2} = {p | p = 2np+3 ʌ np\mathbb{N}_{p}}}

(3) \mathbb{N}_{p}} = {np | np\mathbb{N} ʌ np ≠ nkm}

(4) \mathbb{N}_{p}} = \mathbb{N}} \ \mathbb{N}_{km}}

(5) \mathbb{N}_{km}} = {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ \mathbb{N}}}

 

PROOF of (1):

(a) Because there exists no natural number between 1 and 2, 2 can be only divisible integrally by 1 and itself. Therfore 2 is the smallest prime number.

(b) Every even number greater than 2 is given by

(2c + 4) ʌ c ∈ ℕ

This can be represented as product

2∙ (c+2) ʌ c ∈ ℕ

Thus every even number >2 is divisible integrally by 2 and therefore not a prime number.

Since no prime >2 is even, all other primes must be odd. The formula

p = 2np +3

yields only odd numbers, since 2np for np ∈ ℕ is always even or 0 and an even number or 0 added with 3 yields an odd number.

 

PROOF of (5):

If one sets

ukm = 2nkm+3

and substitutes nkm from

(5) Nkm = {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ ℕ}

results in

ukm = 2(2k²+6k+3+m(2k+3))+3

= 4k²+12k+6+2m(2k+3)+3

= 4k²+12k+9+2m(2k+3)

ukm = (2k+3)²+2m(2k+3)

and further

ukm =(2k+3) (2k+3+2m)

ukm is therefore the product of the odd numbers

2k+3

and

2k+3+2m

With k,m ∈ ℕ, (2k+3)(2k+3+2m) yields all possible products of odd numbers greater than 1, and hence all composite odd numbers greater than 1 that exist.

Thus yields

\mathbb{N}_{km}} = {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ \mathbb{N}}}

all nkm which are given in the formula

ukm=2nkm+3

which yield all composite odd numbers greater than 1.

 

PROOF of (4) \mathbb{N}_{p}} = \mathbb{N} \ \mathbb{N}_{km}}:

The set of natural numbers \mathbb{N} includes all n, which yield in the formula

U=2n+3

all odd numbers greater than 1. And all odd numbers greater than 1 can only be composite or non-composite (=prime). Since

nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ \mathbb{N}

yields all n, which give all composite numbers in U=2n+3, all others must be n=np. Consequently

\mathbb{N}_{p}} = \mathbb{N} \ \mathbb{N}_{km}}

must be correct.

 

PROOF of (2) \mathbb{P} \ {2} = {p | p = 2np+3 ʌ np\mathbb{N}_{p}}}

and

(3) \mathbb{N}_{p}} = {np | np\mathbb{N} ʌ n≠ nkm}:

In U=2n+3, n can be only one of the two: nkm or np.

For the rest of the proof, suppose there is the case where n=nkm=np. But since nkm supplies all n, which in 2n+3 supplies all composite odd numbers, nkm cannot supply n, which supply non-composite numbers (=primes). So there must be

\mathbb{P} \ {2} = {p | p = 2np+3 ʌ np\mathbb{N}_{p}}}

and

\mathbb{N}_{p}} = {np | np\mathbb{N} ʌ n≠ nkm}

be correct.

What needed to be proved.

 

EXAMPLE 1: It shall be determined all prime numbers between 7100 and 7200 if existing:

 

Umin=7101kmminmmax
Umax=7199011821198
nmin=⌈(Umin -3)/2⌉=35491708717
nmax=⌊(Umax -3)/2⌋=35982504510
kmin=03390395
kmax=⌊1/2*(-3+√Umax)⌋=404318321
mmin=f(k)=⌈(nmin-2k²-6k-3)/(2k+3)⌉5267270
mmax=f(k)=⌊(nmax-2k²-6k-3)/(2k+3)⌋6230232
7201203
Legend:8178179
Umin=smallest odd number in the selected range9159160
Umax=largest odd number in the selected range10143145
11130131
12118119
13108109
14100100
159292
168485
177878
187272
196767
206262
215757
225353
234848
244545
254141
263837
273434
283131
292828
302525
312322
322020
331717
341515
351312
361010
3788
3866
3943
4021

 

7100<p<7200
nnkmnp=n-nkmp=2np+3kmnkm=2k²+6k+3+m(2k+3)
3549354903011823549
355035507103011833552
3551355103011843555
3552355203011853558
355335537109011863561
3554355403011873564
3555355503011883567
3556355603011893570
3557355703011903573
3558355803011913576
355935597121011923579
3560356003011933582
3561356103011943585
356235627127011953588
356335637129011963591
3564356403011973594
3565356503011983597
356635660317083551
356735670317093556
356835680317103561
356935690317113566
357035700317123571
357135710317133576
357235720317143581
357335730317153586
35743574715117163591
357535750317173596
357635760325043551
357735770325053558
35783578715925063565
357935790325073572
358035800325083579
358135810325093586
358235820325103593
358335830333903549
358435840333913558
358535850333923567
358635860333933576
35873587717733943585
358835880333953594
358935890343183557
359035900343193568
359135910343203579
35923592718743213590
359335930352673554
359435940352683567
35953595719352693580
359635960352703593
359735970362303561
359835980362313576
62323591
72013560
72023577
72033594
81783561
81793580
91593558
91603579
101433552
101443575
101453598
111303561
111313586
121183549
121193576
131083551
131093580
141003579
15923579
16843551
16853586
17783569
18723567
19673586
20623589
21573576
22533594
23483551
24453594
25413576
26383601
27343561
28313568
29283567
30253558
31233606
32203583
33173552
34153584
35133612
36103561
3783579
3863593
3943603
4023609

 

 

Ergo: The procedure supplies completely all prime numbers (bold type) in the choosen example

between 7100 and 7200.

 

 

EXAMPLE 2: It shall be determined all prime numbers >2 and <1000:

 

Umin=3kmminmmax
Umax=99900165
nmin=⌈(Umin -3)/2⌉=01097
nmax=⌊(Umax -3)/2⌋=4982067
kmin=03051
kmax=⌊1/2*(-3+√Umax)⌋=144039
mmin=f(k)=⌈(nmin-2k²-6k-3)/(2k+3)⌉=05031
mmax=f(k)=⌊(nmax-2k²-6k-3)/(2k+3)⌋6025
7020
Legend:8016
Umin=smallest odd number in the selected range9013
Umax=largest odd number in the selected range10010
1107
1205
1302
1400

 

 

2<p<1000
nnkmnp=n-nkmp=2np+3kmnt

km=2k²+6k+3+m(2k+3)

003003
115016
227029
33030312
44110415
55130518
66030621
77170724
88190827
99030930
10102301033
11110301136
12120301239
13132901342
14143101445
15150301548
16160301651
17173701754
18180301857
19194101960
20204302063
21210302166
22224702269
23230302372
24240302475
25255302578
26260302681
27270302784
28285902887
29296102990
30300303093
31310303196
32326703299
333303033102
343471034105
353573035108
363603036111
373703037114
383879038117
393903039120
404083040123
414103041126
424203042129
434389043132
444403044135
454503045138
464603046141
474797047144
484803048147
4949101049150
5050103050153
515103051156
5252107052159
5353109053162
545403054165
5555113055168
565603056171
575703057174
585803058177
595903059180
606003060183
616103061186
6262127062189
636303063192
6464131064195
656503065198
666603066201
6767137067204
6868139068207
696903069210
707003070213
717103071216
727203072219
7373149073222
7474151074225
757503075228
767603076231
7777157077234
787803078237
797903079240
8080163080243
818103081246
8282167082249
838303083252
848403084255
8585173085258
868603086261
878703087264
8888179088267
8989181089270
909003090273
919103091276
929203092279
939303093282
9494191094285
9595193095288
969603096291
9797197097294
9898199098297
999903099300
100100030100303
101101030101306
102102030102309
103103030103312
1041042110104315
105105030105318
106106030106321
107107030107324
108108030108327
109109030109330
1101102230110333
111111030111336
1121122270112339
1131132290113342
114114030114345
1151152330115348
116116030116351
117117030117354
1181182390118357
1191192410119360
120120030120363
121121030121366
122122030122369
123123030123372
1241242510124375
125125030125378
126126030126381
1271272570127384
128128030128387
129129030129390
1301302630130393
131131030131396
132132030132399
1331332690133402
1341342710134405
135135030135408
136136030136411
1371372770137414
138138030138417
1391392810139420
1401402830140423
141141030141426
142142030142429
143143030143432
144144030144435
1451452930145438
146146030146441
147147030147444
148148030148447
149149030149450
150150030150453
151151030151456
1521523070152459
153153030153462
1541543110154465
1551553130155468
156156030156471
1571573170157474
158158030158477
159159030159480
160160030160483
161161030161486
162162030162489
163163030163492
1641643310164495
165165030165498
166166031011
1671673371116
168168031221
169169031326
170170031431
171171031536
1721723471641
1731733491746
174174031851
1751753531956
1761760311061
1771770311166
17817835911271
1791790311376
1801800311481
1811810311586
18218236711691
1831830311796
18418403118101
185185373119106
18618603120111
18718703121116
188188379122121
18918903123126
190190383124131
19119103125136
19219203126141
193193389127146
19419403128151
19519503129156
19619603130161
197197397131166
19819803132171
199199401133176
20020003134181
20120103135186
20220203136191
203203409137196
20420403138201
20520503139206
20620603140211
20720703141216
208208419142221
209209421143226
21021003144231
21121103145236
21221203146241
21321303147246
214214431148251
215215433149256
21621603150261
21721703151266
218218439152271
21921903153276
220220443154281
22122103155286
22222203156291
223223449157296
22422403158301
22522503159306
22622603160311
227227457161316
22822803162321
229229461163326
230230463164331
23123103165336
232232467166341
23323303167346
23423403168351
23523503169356
23623603170361
23723703171366
238238479172371
23923903173376
24024003174381
24124103175386
242242487176391
24324303177396
244244491178401
24524503179406
24624603180411
24724703181416
248248499182421
24924903183426
250250503184431
25125103185436
25225203186441
253253509187446
25425403188451
25525503189456
25625603190461
25725703191466
25825803192471
259259521193476
260260523194481
26126103195486
26226203196491
26326303197496
264264032023
265265032130
266266032237
267267032344
268268032451
2692695412558
270270032665
271271032772
2722725472879
273273032986
2742740321093
27527503211100
27627603212107
277277557213114
27827803214121
27927903215128
280280563216135
28128103217142
28228203218149
283283569219156
284284571220163
28528503221170
28628603222177
287287577223184
28828803224191
28928903225198
29029003226205
29129103227212
292292587228219
29329303229226
29429403230233
295295593231240
29629603232247
29729703233254
298298599234261
299299601235268
30030003236275
30130103237282
302302607238289
30330303239296
30430403240303
305305613241310
30630603242317
307307617243324
308308619244331
30930903245338
31031003246345
31131103247352
31231203248359
31331303249366
314314631250373
31531503251380
31631603252387
31731703253394
31831803254401
319319641255408
320320643256415
32132103257422
322322647258429
32332303259436
32432403260443
325325653261450
32632603262457
32732703263464
328328659264471
329329661265478
33033003266485
33133103267492
332332033039
333333033148
334334033257
3353356733366
336336033475
3373376773584
338338033693
3393390337102
34034068338111
3413410339120
34234203310129
34334303311138
344344691312147
34534503313156
34634603314165
34734703315174
34834803316183
349349701317192
35035003318201
35135103319210
35235203320219
353353709321228
35435403322237
35535503323246
35635603324255
35735703325264
358358719326273
35935903327282
36036003328291
36136103329300
362362727330309
36336303331318
36436403332327
365365733333336
36636603334345
36736703335354
368368739336363
36936903337372
370370743338381
37137103339390
37237203340399
37337303341408
374374751342417
37537503343426
37637603344435
377377757345444
37837803346453
379379761347462
38038003348471
38138103349480
38238203350489
383383769351498
384384034059
3853857734170
386386034281
387387034392
3883880344103
3893890345114
3903900346125
3913910347136
39239278748147
3933930349158
39439403410169
39539503411180
39639603412191
397397797413202
39839803414213
39939903415224
40040003416235
40140103417246
40240203418257
403403809419268
404404811420279
40540503421290
40640603422301
40740703423312
40840803424323
409409821425334
410410823426345
41141103427356
412412827428367
413413829429378
41441403430389
41541503431400
41641603432411
41741703433422
418418839434433
41941903435444
42042003436455
42142103437466
42242203438477
42342303439488
424424035083
4254258535196
4264260352109
42742785753122
42842885954135
4294290355148
43043086356161
4314310357174
4324320358187
4334330359200
43443403510213
43543503511226
43643603512239
437437877513252
43843803514265
439439881515278
440440883516291
44144103517304
442442887518317
44344303519330
44444403520343
44544503521356
44644603522369
44744703523382
44844803524395
44944903525408
45045003526421
45145103527434
452452907528447
45345303529460
454454911530473
45545503531486
4564560360111
4574570361126
45845891962141
4594590363156
4604600364171
4614610365186
4624620366201
46346392967216
4644640368231
4654650369246
46646603610261
467467937611276
46846803612291
469469941613306
47047003614321
47147103615336
472472947616351
47347303617366
47447403618381
475475953619396
47647603620411
47747703621426
47847803622441
47947903623456
48048003624471
48148103625486
48248296770143
4834830371160
48448497172177
4854850373194
4864860374211
48748797775228
4884880376245
4894890377262
49049098378279
4914910379296
49249203710313
49349303711330
494494991712347
49549503713364
49649603714381
497497997715398
49849803716415
717432
718449
719466
720483
80179
81198
82217
83236
84255
85274
86293
87312
88331
89350
810369
811388
812407
813426
814445
815464
816483
90219
91240
92261
93282
94303
95324
96345
97366
98387
99408
910429
911450
912471
913492
100263
101286
102309
103332
104355
105378
106401
107424
108447
109470
1010493
110311
111336
112361
113386
114411
115436
116461
117486
120363
121390
122417
123444
124471
125498
130419
131448
132477
140479

 

Ergo: The procedure supplies completely all prime numbers (bold type) in the choosen example

>2 and <1000.

 

Munich, 7 August 2019

Gottfried Färberböck