The determination of all prime numbers in a selected range with the n-method
PRIME NUMBER SERIES 6
The determination of all prime numbers in a selected range with the n-method
The n-method is based on premise (1) and the set operations (2) to (5):
(1) 2 is the smallest and the one and only even prime number.
(2) \ {2} = {p | p = 2np+3 ʌ np ∈ }
(3) = {np | np ∈ ʌ np ≠ nkm}
(4) = \
(5) = {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ }
PROOF of (1):
(a) Because there exists no natural number between 1 and 2, 2 can be only divisible integrally by 1 and itself. Therfore 2 is the smallest prime number.
(b) Every even number greater than 2 is given by
(2c + 4) ʌ c ∈ ℕ
This can be represented as product
2∙ (c+2) ʌ c ∈ ℕ
Thus every even number >2 is divisible integrally by 2 and therefore not a prime number.
Since no prime >2 is even, all other primes must be odd. The formula
p = 2np +3
yields only odd numbers, since 2np for np ∈ ℕ is always even or 0 and an even number or 0 added with 3 yields an odd number.
PROOF of (5):
If one sets
ukm = 2nkm+3
and substitutes nkm from
(5) Nkm = {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ ℕ}
results in
ukm = 2(2k²+6k+3+m(2k+3))+3
= 4k²+12k+6+2m(2k+3)+3
= 4k²+12k+9+2m(2k+3)
ukm = (2k+3)²+2m(2k+3)
and further
ukm =(2k+3) (2k+3+2m)
ukm is therefore the product of the odd numbers
2k+3
and
2k+3+2m
With k,m ∈ ℕ, (2k+3)(2k+3+2m) yields all possible products of odd numbers greater than 1, and hence all composite odd numbers greater than 1 that exist.
Thus yields
= {nkm | nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈ }
all nkm which are given in the formula
ukm=2nkm+3
which yield all composite odd numbers greater than 1.
PROOF of (4) = \ :
The set of natural numbers includes all n, which yield in the formula
U=2n+3
all odd numbers greater than 1. And all odd numbers greater than 1 can only be composite or non-composite (=prime). Since
nkm = 2k²+6k+3+m(2k+3) ʌ k, m ∈
yields all n, which give all composite numbers in U=2n+3, all others must be n=np. Consequently
= \
must be correct.
PROOF of (2) \ {2} = {p | p = 2np+3 ʌ np ∈ }
and
(3) = {np | np ∈ ʌ np ≠ nkm}:
In U=2n+3, n can be only one of the two: nkm or np.
For the rest of the proof, suppose there is the case where n=nkm=np. But since nkm supplies all n, which in 2n+3 supplies all composite odd numbers, nkm cannot supply n, which supply non-composite numbers (=primes). So there must be
\ {2} = {p | p = 2np+3 ʌ np ∈ }
and
= {np | np ∈ ʌ np ≠ nkm}
be correct.
What needed to be proved.
EXAMPLE 1: It shall be determined all prime numbers between 7100 and 7200 if existing:
Umin | = | 7101 | k | mmin | mmax |
Umax | = | 7199 | 0 | 1182 | 1198 |
nmin=⌈(Umin -3)/2⌉ | = | 3549 | 1 | 708 | 717 |
nmax=⌊(Umax -3)/2⌋ | = | 3598 | 2 | 504 | 510 |
kmin | = | 0 | 3 | 390 | 395 |
kmax=⌊1/2*(-3+√Umax)⌋ | = | 40 | 4 | 318 | 321 |
mmin=f(k)=⌈(nmin-2k²-6k-3)/(2k+3)⌉ | 5 | 267 | 270 | ||
mmax=f(k)=⌊(nmax-2k²-6k-3)/(2k+3)⌋ | 6 | 230 | 232 | ||
7 | 201 | 203 | |||
Legend: | 8 | 178 | 179 | ||
Umin=smallest odd number in the selected range | 9 | 159 | 160 | ||
Umax=largest odd number in the selected range | 10 | 143 | 145 | ||
11 | 130 | 131 | |||
12 | 118 | 119 | |||
13 | 108 | 109 | |||
14 | 100 | 100 | |||
15 | 92 | 92 | |||
16 | 84 | 85 | |||
17 | 78 | 78 | |||
18 | 72 | 72 | |||
19 | 67 | 67 | |||
20 | 62 | 62 | |||
21 | 57 | 57 | |||
22 | 53 | 53 | |||
23 | 48 | 48 | |||
24 | 45 | 45 | |||
25 | 41 | 41 | |||
26 | 38 | 37 | |||
27 | 34 | 34 | |||
28 | 31 | 31 | |||
29 | 28 | 28 | |||
30 | 25 | 25 | |||
31 | 23 | 22 | |||
32 | 20 | 20 | |||
33 | 17 | 17 | |||
34 | 15 | 15 | |||
35 | 13 | 12 | |||
36 | 10 | 10 | |||
37 | 8 | 8 | |||
38 | 6 | 6 | |||
39 | 4 | 3 | |||
40 | 2 | 1 |
7100<p<7200 | ||||||
n | nkm | np=n-nkm | p=2np+3 | k | m | nkm=2k²+6k+3+m(2k+3) |
3549 | 3549 | 0 | 3 | 0 | 1182 | 3549 |
3550 | 3550 | 7103 | 0 | 1183 | 3552 | |
3551 | 3551 | 0 | 3 | 0 | 1184 | 3555 |
3552 | 3552 | 0 | 3 | 0 | 1185 | 3558 |
3553 | 3553 | 7109 | 0 | 1186 | 3561 | |
3554 | 3554 | 0 | 3 | 0 | 1187 | 3564 |
3555 | 3555 | 0 | 3 | 0 | 1188 | 3567 |
3556 | 3556 | 0 | 3 | 0 | 1189 | 3570 |
3557 | 3557 | 0 | 3 | 0 | 1190 | 3573 |
3558 | 3558 | 0 | 3 | 0 | 1191 | 3576 |
3559 | 3559 | 7121 | 0 | 1192 | 3579 | |
3560 | 3560 | 0 | 3 | 0 | 1193 | 3582 |
3561 | 3561 | 0 | 3 | 0 | 1194 | 3585 |
3562 | 3562 | 7127 | 0 | 1195 | 3588 | |
3563 | 3563 | 7129 | 0 | 1196 | 3591 | |
3564 | 3564 | 0 | 3 | 0 | 1197 | 3594 |
3565 | 3565 | 0 | 3 | 0 | 1198 | 3597 |
3566 | 3566 | 0 | 3 | 1 | 708 | 3551 |
3567 | 3567 | 0 | 3 | 1 | 709 | 3556 |
3568 | 3568 | 0 | 3 | 1 | 710 | 3561 |
3569 | 3569 | 0 | 3 | 1 | 711 | 3566 |
3570 | 3570 | 0 | 3 | 1 | 712 | 3571 |
3571 | 3571 | 0 | 3 | 1 | 713 | 3576 |
3572 | 3572 | 0 | 3 | 1 | 714 | 3581 |
3573 | 3573 | 0 | 3 | 1 | 715 | 3586 |
3574 | 3574 | 7151 | 1 | 716 | 3591 | |
3575 | 3575 | 0 | 3 | 1 | 717 | 3596 |
3576 | 3576 | 0 | 3 | 2 | 504 | 3551 |
3577 | 3577 | 0 | 3 | 2 | 505 | 3558 |
3578 | 3578 | 7159 | 2 | 506 | 3565 | |
3579 | 3579 | 0 | 3 | 2 | 507 | 3572 |
3580 | 3580 | 0 | 3 | 2 | 508 | 3579 |
3581 | 3581 | 0 | 3 | 2 | 509 | 3586 |
3582 | 3582 | 0 | 3 | 2 | 510 | 3593 |
3583 | 3583 | 0 | 3 | 3 | 390 | 3549 |
3584 | 3584 | 0 | 3 | 3 | 391 | 3558 |
3585 | 3585 | 0 | 3 | 3 | 392 | 3567 |
3586 | 3586 | 0 | 3 | 3 | 393 | 3576 |
3587 | 3587 | 7177 | 3 | 394 | 3585 | |
3588 | 3588 | 0 | 3 | 3 | 395 | 3594 |
3589 | 3589 | 0 | 3 | 4 | 318 | 3557 |
3590 | 3590 | 0 | 3 | 4 | 319 | 3568 |
3591 | 3591 | 0 | 3 | 4 | 320 | 3579 |
3592 | 3592 | 7187 | 4 | 321 | 3590 | |
3593 | 3593 | 0 | 3 | 5 | 267 | 3554 |
3594 | 3594 | 0 | 3 | 5 | 268 | 3567 |
3595 | 3595 | 7193 | 5 | 269 | 3580 | |
3596 | 3596 | 0 | 3 | 5 | 270 | 3593 |
3597 | 3597 | 0 | 3 | 6 | 230 | 3561 |
3598 | 3598 | 0 | 3 | 6 | 231 | 3576 |
6 | 232 | 3591 | ||||
7 | 201 | 3560 | ||||
7 | 202 | 3577 | ||||
7 | 203 | 3594 | ||||
8 | 178 | 3561 | ||||
8 | 179 | 3580 | ||||
9 | 159 | 3558 | ||||
9 | 160 | 3579 | ||||
10 | 143 | 3552 | ||||
10 | 144 | 3575 | ||||
10 | 145 | 3598 | ||||
11 | 130 | 3561 | ||||
11 | 131 | 3586 | ||||
12 | 118 | 3549 | ||||
12 | 119 | 3576 | ||||
13 | 108 | 3551 | ||||
13 | 109 | 3580 | ||||
14 | 100 | 3579 | ||||
15 | 92 | 3579 | ||||
16 | 84 | 3551 | ||||
16 | 85 | 3586 | ||||
17 | 78 | 3569 | ||||
18 | 72 | 3567 | ||||
19 | 67 | 3586 | ||||
20 | 62 | 3589 | ||||
21 | 57 | 3576 | ||||
22 | 53 | 3594 | ||||
23 | 48 | 3551 | ||||
24 | 45 | 3594 | ||||
25 | 41 | 3576 | ||||
26 | 38 | 3601 | ||||
27 | 34 | 3561 | ||||
28 | 31 | 3568 | ||||
29 | 28 | 3567 | ||||
30 | 25 | 3558 | ||||
31 | 23 | 3606 | ||||
32 | 20 | 3583 | ||||
33 | 17 | 3552 | ||||
34 | 15 | 3584 | ||||
35 | 13 | 3612 | ||||
36 | 10 | 3561 | ||||
37 | 8 | 3579 | ||||
38 | 6 | 3593 | ||||
39 | 4 | 3603 | ||||
40 | 2 | 3609 |
Ergo: The procedure supplies completely all prime numbers (bold type) in the choosen example
between 7100 and 7200.
EXAMPLE 2: It shall be determined all prime numbers >2 and <1000:
Umin | = | 3 | k | mmin | mmax |
Umax | = | 999 | 0 | 0 | 165 |
nmin=⌈(Umin -3)/2⌉ | = | 0 | 1 | 0 | 97 |
nmax=⌊(Umax -3)/2⌋ | = | 498 | 2 | 0 | 67 |
kmin | = | 0 | 3 | 0 | 51 |
kmax=⌊1/2*(-3+√Umax)⌋ | = | 14 | 4 | 0 | 39 |
mmin=f(k)=⌈(nmin-2k²-6k-3)/(2k+3)⌉ | = | 0 | 5 | 0 | 31 |
mmax=f(k)=⌊(nmax-2k²-6k-3)/(2k+3)⌋ | 6 | 0 | 25 | ||
7 | 0 | 20 | |||
Legend: | 8 | 0 | 16 | ||
Umin=smallest odd number in the selected range | 9 | 0 | 13 | ||
Umax=largest odd number in the selected range | 10 | 0 | 10 | ||
11 | 0 | 7 | |||
12 | 0 | 5 | |||
13 | 0 | 2 | |||
14 | 0 | 0 |
2<p<1000 | ||||||
n | nkm | np=n-nkm | p=2np+3 | k | m | nt km=2k²+6k+3+m(2k+3) |
0 | 0 | 3 | 0 | 0 | 3 | |
1 | 1 | 5 | 0 | 1 | 6 | |
2 | 2 | 7 | 0 | 2 | 9 | |
3 | 3 | 0 | 3 | 0 | 3 | 12 |
4 | 4 | 11 | 0 | 4 | 15 | |
5 | 5 | 13 | 0 | 5 | 18 | |
6 | 6 | 0 | 3 | 0 | 6 | 21 |
7 | 7 | 17 | 0 | 7 | 24 | |
8 | 8 | 19 | 0 | 8 | 27 | |
9 | 9 | 0 | 3 | 0 | 9 | 30 |
10 | 10 | 23 | 0 | 10 | 33 | |
11 | 11 | 0 | 3 | 0 | 11 | 36 |
12 | 12 | 0 | 3 | 0 | 12 | 39 |
13 | 13 | 29 | 0 | 13 | 42 | |
14 | 14 | 31 | 0 | 14 | 45 | |
15 | 15 | 0 | 3 | 0 | 15 | 48 |
16 | 16 | 0 | 3 | 0 | 16 | 51 |
17 | 17 | 37 | 0 | 17 | 54 | |
18 | 18 | 0 | 3 | 0 | 18 | 57 |
19 | 19 | 41 | 0 | 19 | 60 | |
20 | 20 | 43 | 0 | 20 | 63 | |
21 | 21 | 0 | 3 | 0 | 21 | 66 |
22 | 22 | 47 | 0 | 22 | 69 | |
23 | 23 | 0 | 3 | 0 | 23 | 72 |
24 | 24 | 0 | 3 | 0 | 24 | 75 |
25 | 25 | 53 | 0 | 25 | 78 | |
26 | 26 | 0 | 3 | 0 | 26 | 81 |
27 | 27 | 0 | 3 | 0 | 27 | 84 |
28 | 28 | 59 | 0 | 28 | 87 | |
29 | 29 | 61 | 0 | 29 | 90 | |
30 | 30 | 0 | 3 | 0 | 30 | 93 |
31 | 31 | 0 | 3 | 0 | 31 | 96 |
32 | 32 | 67 | 0 | 32 | 99 | |
33 | 33 | 0 | 3 | 0 | 33 | 102 |
34 | 34 | 71 | 0 | 34 | 105 | |
35 | 35 | 73 | 0 | 35 | 108 | |
36 | 36 | 0 | 3 | 0 | 36 | 111 |
37 | 37 | 0 | 3 | 0 | 37 | 114 |
38 | 38 | 79 | 0 | 38 | 117 | |
39 | 39 | 0 | 3 | 0 | 39 | 120 |
40 | 40 | 83 | 0 | 40 | 123 | |
41 | 41 | 0 | 3 | 0 | 41 | 126 |
42 | 42 | 0 | 3 | 0 | 42 | 129 |
43 | 43 | 89 | 0 | 43 | 132 | |
44 | 44 | 0 | 3 | 0 | 44 | 135 |
45 | 45 | 0 | 3 | 0 | 45 | 138 |
46 | 46 | 0 | 3 | 0 | 46 | 141 |
47 | 47 | 97 | 0 | 47 | 144 | |
48 | 48 | 0 | 3 | 0 | 48 | 147 |
49 | 49 | 101 | 0 | 49 | 150 | |
50 | 50 | 103 | 0 | 50 | 153 | |
51 | 51 | 0 | 3 | 0 | 51 | 156 |
52 | 52 | 107 | 0 | 52 | 159 | |
53 | 53 | 109 | 0 | 53 | 162 | |
54 | 54 | 0 | 3 | 0 | 54 | 165 |
55 | 55 | 113 | 0 | 55 | 168 | |
56 | 56 | 0 | 3 | 0 | 56 | 171 |
57 | 57 | 0 | 3 | 0 | 57 | 174 |
58 | 58 | 0 | 3 | 0 | 58 | 177 |
59 | 59 | 0 | 3 | 0 | 59 | 180 |
60 | 60 | 0 | 3 | 0 | 60 | 183 |
61 | 61 | 0 | 3 | 0 | 61 | 186 |
62 | 62 | 127 | 0 | 62 | 189 | |
63 | 63 | 0 | 3 | 0 | 63 | 192 |
64 | 64 | 131 | 0 | 64 | 195 | |
65 | 65 | 0 | 3 | 0 | 65 | 198 |
66 | 66 | 0 | 3 | 0 | 66 | 201 |
67 | 67 | 137 | 0 | 67 | 204 | |
68 | 68 | 139 | 0 | 68 | 207 | |
69 | 69 | 0 | 3 | 0 | 69 | 210 |
70 | 70 | 0 | 3 | 0 | 70 | 213 |
71 | 71 | 0 | 3 | 0 | 71 | 216 |
72 | 72 | 0 | 3 | 0 | 72 | 219 |
73 | 73 | 149 | 0 | 73 | 222 | |
74 | 74 | 151 | 0 | 74 | 225 | |
75 | 75 | 0 | 3 | 0 | 75 | 228 |
76 | 76 | 0 | 3 | 0 | 76 | 231 |
77 | 77 | 157 | 0 | 77 | 234 | |
78 | 78 | 0 | 3 | 0 | 78 | 237 |
79 | 79 | 0 | 3 | 0 | 79 | 240 |
80 | 80 | 163 | 0 | 80 | 243 | |
81 | 81 | 0 | 3 | 0 | 81 | 246 |
82 | 82 | 167 | 0 | 82 | 249 | |
83 | 83 | 0 | 3 | 0 | 83 | 252 |
84 | 84 | 0 | 3 | 0 | 84 | 255 |
85 | 85 | 173 | 0 | 85 | 258 | |
86 | 86 | 0 | 3 | 0 | 86 | 261 |
87 | 87 | 0 | 3 | 0 | 87 | 264 |
88 | 88 | 179 | 0 | 88 | 267 | |
89 | 89 | 181 | 0 | 89 | 270 | |
90 | 90 | 0 | 3 | 0 | 90 | 273 |
91 | 91 | 0 | 3 | 0 | 91 | 276 |
92 | 92 | 0 | 3 | 0 | 92 | 279 |
93 | 93 | 0 | 3 | 0 | 93 | 282 |
94 | 94 | 191 | 0 | 94 | 285 | |
95 | 95 | 193 | 0 | 95 | 288 | |
96 | 96 | 0 | 3 | 0 | 96 | 291 |
97 | 97 | 197 | 0 | 97 | 294 | |
98 | 98 | 199 | 0 | 98 | 297 | |
99 | 99 | 0 | 3 | 0 | 99 | 300 |
100 | 100 | 0 | 3 | 0 | 100 | 303 |
101 | 101 | 0 | 3 | 0 | 101 | 306 |
102 | 102 | 0 | 3 | 0 | 102 | 309 |
103 | 103 | 0 | 3 | 0 | 103 | 312 |
104 | 104 | 211 | 0 | 104 | 315 | |
105 | 105 | 0 | 3 | 0 | 105 | 318 |
106 | 106 | 0 | 3 | 0 | 106 | 321 |
107 | 107 | 0 | 3 | 0 | 107 | 324 |
108 | 108 | 0 | 3 | 0 | 108 | 327 |
109 | 109 | 0 | 3 | 0 | 109 | 330 |
110 | 110 | 223 | 0 | 110 | 333 | |
111 | 111 | 0 | 3 | 0 | 111 | 336 |
112 | 112 | 227 | 0 | 112 | 339 | |
113 | 113 | 229 | 0 | 113 | 342 | |
114 | 114 | 0 | 3 | 0 | 114 | 345 |
115 | 115 | 233 | 0 | 115 | 348 | |
116 | 116 | 0 | 3 | 0 | 116 | 351 |
117 | 117 | 0 | 3 | 0 | 117 | 354 |
118 | 118 | 239 | 0 | 118 | 357 | |
119 | 119 | 241 | 0 | 119 | 360 | |
120 | 120 | 0 | 3 | 0 | 120 | 363 |
121 | 121 | 0 | 3 | 0 | 121 | 366 |
122 | 122 | 0 | 3 | 0 | 122 | 369 |
123 | 123 | 0 | 3 | 0 | 123 | 372 |
124 | 124 | 251 | 0 | 124 | 375 | |
125 | 125 | 0 | 3 | 0 | 125 | 378 |
126 | 126 | 0 | 3 | 0 | 126 | 381 |
127 | 127 | 257 | 0 | 127 | 384 | |
128 | 128 | 0 | 3 | 0 | 128 | 387 |
129 | 129 | 0 | 3 | 0 | 129 | 390 |
130 | 130 | 263 | 0 | 130 | 393 | |
131 | 131 | 0 | 3 | 0 | 131 | 396 |
132 | 132 | 0 | 3 | 0 | 132 | 399 |
133 | 133 | 269 | 0 | 133 | 402 | |
134 | 134 | 271 | 0 | 134 | 405 | |
135 | 135 | 0 | 3 | 0 | 135 | 408 |
136 | 136 | 0 | 3 | 0 | 136 | 411 |
137 | 137 | 277 | 0 | 137 | 414 | |
138 | 138 | 0 | 3 | 0 | 138 | 417 |
139 | 139 | 281 | 0 | 139 | 420 | |
140 | 140 | 283 | 0 | 140 | 423 | |
141 | 141 | 0 | 3 | 0 | 141 | 426 |
142 | 142 | 0 | 3 | 0 | 142 | 429 |
143 | 143 | 0 | 3 | 0 | 143 | 432 |
144 | 144 | 0 | 3 | 0 | 144 | 435 |
145 | 145 | 293 | 0 | 145 | 438 | |
146 | 146 | 0 | 3 | 0 | 146 | 441 |
147 | 147 | 0 | 3 | 0 | 147 | 444 |
148 | 148 | 0 | 3 | 0 | 148 | 447 |
149 | 149 | 0 | 3 | 0 | 149 | 450 |
150 | 150 | 0 | 3 | 0 | 150 | 453 |
151 | 151 | 0 | 3 | 0 | 151 | 456 |
152 | 152 | 307 | 0 | 152 | 459 | |
153 | 153 | 0 | 3 | 0 | 153 | 462 |
154 | 154 | 311 | 0 | 154 | 465 | |
155 | 155 | 313 | 0 | 155 | 468 | |
156 | 156 | 0 | 3 | 0 | 156 | 471 |
157 | 157 | 317 | 0 | 157 | 474 | |
158 | 158 | 0 | 3 | 0 | 158 | 477 |
159 | 159 | 0 | 3 | 0 | 159 | 480 |
160 | 160 | 0 | 3 | 0 | 160 | 483 |
161 | 161 | 0 | 3 | 0 | 161 | 486 |
162 | 162 | 0 | 3 | 0 | 162 | 489 |
163 | 163 | 0 | 3 | 0 | 163 | 492 |
164 | 164 | 331 | 0 | 164 | 495 | |
165 | 165 | 0 | 3 | 0 | 165 | 498 |
166 | 166 | 0 | 3 | 1 | 0 | 11 |
167 | 167 | 337 | 1 | 1 | 16 | |
168 | 168 | 0 | 3 | 1 | 2 | 21 |
169 | 169 | 0 | 3 | 1 | 3 | 26 |
170 | 170 | 0 | 3 | 1 | 4 | 31 |
171 | 171 | 0 | 3 | 1 | 5 | 36 |
172 | 172 | 347 | 1 | 6 | 41 | |
173 | 173 | 349 | 1 | 7 | 46 | |
174 | 174 | 0 | 3 | 1 | 8 | 51 |
175 | 175 | 353 | 1 | 9 | 56 | |
176 | 176 | 0 | 3 | 1 | 10 | 61 |
177 | 177 | 0 | 3 | 1 | 11 | 66 |
178 | 178 | 359 | 1 | 12 | 71 | |
179 | 179 | 0 | 3 | 1 | 13 | 76 |
180 | 180 | 0 | 3 | 1 | 14 | 81 |
181 | 181 | 0 | 3 | 1 | 15 | 86 |
182 | 182 | 367 | 1 | 16 | 91 | |
183 | 183 | 0 | 3 | 1 | 17 | 96 |
184 | 184 | 0 | 3 | 1 | 18 | 101 |
185 | 185 | 373 | 1 | 19 | 106 | |
186 | 186 | 0 | 3 | 1 | 20 | 111 |
187 | 187 | 0 | 3 | 1 | 21 | 116 |
188 | 188 | 379 | 1 | 22 | 121 | |
189 | 189 | 0 | 3 | 1 | 23 | 126 |
190 | 190 | 383 | 1 | 24 | 131 | |
191 | 191 | 0 | 3 | 1 | 25 | 136 |
192 | 192 | 0 | 3 | 1 | 26 | 141 |
193 | 193 | 389 | 1 | 27 | 146 | |
194 | 194 | 0 | 3 | 1 | 28 | 151 |
195 | 195 | 0 | 3 | 1 | 29 | 156 |
196 | 196 | 0 | 3 | 1 | 30 | 161 |
197 | 197 | 397 | 1 | 31 | 166 | |
198 | 198 | 0 | 3 | 1 | 32 | 171 |
199 | 199 | 401 | 1 | 33 | 176 | |
200 | 200 | 0 | 3 | 1 | 34 | 181 |
201 | 201 | 0 | 3 | 1 | 35 | 186 |
202 | 202 | 0 | 3 | 1 | 36 | 191 |
203 | 203 | 409 | 1 | 37 | 196 | |
204 | 204 | 0 | 3 | 1 | 38 | 201 |
205 | 205 | 0 | 3 | 1 | 39 | 206 |
206 | 206 | 0 | 3 | 1 | 40 | 211 |
207 | 207 | 0 | 3 | 1 | 41 | 216 |
208 | 208 | 419 | 1 | 42 | 221 | |
209 | 209 | 421 | 1 | 43 | 226 | |
210 | 210 | 0 | 3 | 1 | 44 | 231 |
211 | 211 | 0 | 3 | 1 | 45 | 236 |
212 | 212 | 0 | 3 | 1 | 46 | 241 |
213 | 213 | 0 | 3 | 1 | 47 | 246 |
214 | 214 | 431 | 1 | 48 | 251 | |
215 | 215 | 433 | 1 | 49 | 256 | |
216 | 216 | 0 | 3 | 1 | 50 | 261 |
217 | 217 | 0 | 3 | 1 | 51 | 266 |
218 | 218 | 439 | 1 | 52 | 271 | |
219 | 219 | 0 | 3 | 1 | 53 | 276 |
220 | 220 | 443 | 1 | 54 | 281 | |
221 | 221 | 0 | 3 | 1 | 55 | 286 |
222 | 222 | 0 | 3 | 1 | 56 | 291 |
223 | 223 | 449 | 1 | 57 | 296 | |
224 | 224 | 0 | 3 | 1 | 58 | 301 |
225 | 225 | 0 | 3 | 1 | 59 | 306 |
226 | 226 | 0 | 3 | 1 | 60 | 311 |
227 | 227 | 457 | 1 | 61 | 316 | |
228 | 228 | 0 | 3 | 1 | 62 | 321 |
229 | 229 | 461 | 1 | 63 | 326 | |
230 | 230 | 463 | 1 | 64 | 331 | |
231 | 231 | 0 | 3 | 1 | 65 | 336 |
232 | 232 | 467 | 1 | 66 | 341 | |
233 | 233 | 0 | 3 | 1 | 67 | 346 |
234 | 234 | 0 | 3 | 1 | 68 | 351 |
235 | 235 | 0 | 3 | 1 | 69 | 356 |
236 | 236 | 0 | 3 | 1 | 70 | 361 |
237 | 237 | 0 | 3 | 1 | 71 | 366 |
238 | 238 | 479 | 1 | 72 | 371 | |
239 | 239 | 0 | 3 | 1 | 73 | 376 |
240 | 240 | 0 | 3 | 1 | 74 | 381 |
241 | 241 | 0 | 3 | 1 | 75 | 386 |
242 | 242 | 487 | 1 | 76 | 391 | |
243 | 243 | 0 | 3 | 1 | 77 | 396 |
244 | 244 | 491 | 1 | 78 | 401 | |
245 | 245 | 0 | 3 | 1 | 79 | 406 |
246 | 246 | 0 | 3 | 1 | 80 | 411 |
247 | 247 | 0 | 3 | 1 | 81 | 416 |
248 | 248 | 499 | 1 | 82 | 421 | |
249 | 249 | 0 | 3 | 1 | 83 | 426 |
250 | 250 | 503 | 1 | 84 | 431 | |
251 | 251 | 0 | 3 | 1 | 85 | 436 |
252 | 252 | 0 | 3 | 1 | 86 | 441 |
253 | 253 | 509 | 1 | 87 | 446 | |
254 | 254 | 0 | 3 | 1 | 88 | 451 |
255 | 255 | 0 | 3 | 1 | 89 | 456 |
256 | 256 | 0 | 3 | 1 | 90 | 461 |
257 | 257 | 0 | 3 | 1 | 91 | 466 |
258 | 258 | 0 | 3 | 1 | 92 | 471 |
259 | 259 | 521 | 1 | 93 | 476 | |
260 | 260 | 523 | 1 | 94 | 481 | |
261 | 261 | 0 | 3 | 1 | 95 | 486 |
262 | 262 | 0 | 3 | 1 | 96 | 491 |
263 | 263 | 0 | 3 | 1 | 97 | 496 |
264 | 264 | 0 | 3 | 2 | 0 | 23 |
265 | 265 | 0 | 3 | 2 | 1 | 30 |
266 | 266 | 0 | 3 | 2 | 2 | 37 |
267 | 267 | 0 | 3 | 2 | 3 | 44 |
268 | 268 | 0 | 3 | 2 | 4 | 51 |
269 | 269 | 541 | 2 | 5 | 58 | |
270 | 270 | 0 | 3 | 2 | 6 | 65 |
271 | 271 | 0 | 3 | 2 | 7 | 72 |
272 | 272 | 547 | 2 | 8 | 79 | |
273 | 273 | 0 | 3 | 2 | 9 | 86 |
274 | 274 | 0 | 3 | 2 | 10 | 93 |
275 | 275 | 0 | 3 | 2 | 11 | 100 |
276 | 276 | 0 | 3 | 2 | 12 | 107 |
277 | 277 | 557 | 2 | 13 | 114 | |
278 | 278 | 0 | 3 | 2 | 14 | 121 |
279 | 279 | 0 | 3 | 2 | 15 | 128 |
280 | 280 | 563 | 2 | 16 | 135 | |
281 | 281 | 0 | 3 | 2 | 17 | 142 |
282 | 282 | 0 | 3 | 2 | 18 | 149 |
283 | 283 | 569 | 2 | 19 | 156 | |
284 | 284 | 571 | 2 | 20 | 163 | |
285 | 285 | 0 | 3 | 2 | 21 | 170 |
286 | 286 | 0 | 3 | 2 | 22 | 177 |
287 | 287 | 577 | 2 | 23 | 184 | |
288 | 288 | 0 | 3 | 2 | 24 | 191 |
289 | 289 | 0 | 3 | 2 | 25 | 198 |
290 | 290 | 0 | 3 | 2 | 26 | 205 |
291 | 291 | 0 | 3 | 2 | 27 | 212 |
292 | 292 | 587 | 2 | 28 | 219 | |
293 | 293 | 0 | 3 | 2 | 29 | 226 |
294 | 294 | 0 | 3 | 2 | 30 | 233 |
295 | 295 | 593 | 2 | 31 | 240 | |
296 | 296 | 0 | 3 | 2 | 32 | 247 |
297 | 297 | 0 | 3 | 2 | 33 | 254 |
298 | 298 | 599 | 2 | 34 | 261 | |
299 | 299 | 601 | 2 | 35 | 268 | |
300 | 300 | 0 | 3 | 2 | 36 | 275 |
301 | 301 | 0 | 3 | 2 | 37 | 282 |
302 | 302 | 607 | 2 | 38 | 289 | |
303 | 303 | 0 | 3 | 2 | 39 | 296 |
304 | 304 | 0 | 3 | 2 | 40 | 303 |
305 | 305 | 613 | 2 | 41 | 310 | |
306 | 306 | 0 | 3 | 2 | 42 | 317 |
307 | 307 | 617 | 2 | 43 | 324 | |
308 | 308 | 619 | 2 | 44 | 331 | |
309 | 309 | 0 | 3 | 2 | 45 | 338 |
310 | 310 | 0 | 3 | 2 | 46 | 345 |
311 | 311 | 0 | 3 | 2 | 47 | 352 |
312 | 312 | 0 | 3 | 2 | 48 | 359 |
313 | 313 | 0 | 3 | 2 | 49 | 366 |
314 | 314 | 631 | 2 | 50 | 373 | |
315 | 315 | 0 | 3 | 2 | 51 | 380 |
316 | 316 | 0 | 3 | 2 | 52 | 387 |
317 | 317 | 0 | 3 | 2 | 53 | 394 |
318 | 318 | 0 | 3 | 2 | 54 | 401 |
319 | 319 | 641 | 2 | 55 | 408 | |
320 | 320 | 643 | 2 | 56 | 415 | |
321 | 321 | 0 | 3 | 2 | 57 | 422 |
322 | 322 | 647 | 2 | 58 | 429 | |
323 | 323 | 0 | 3 | 2 | 59 | 436 |
324 | 324 | 0 | 3 | 2 | 60 | 443 |
325 | 325 | 653 | 2 | 61 | 450 | |
326 | 326 | 0 | 3 | 2 | 62 | 457 |
327 | 327 | 0 | 3 | 2 | 63 | 464 |
328 | 328 | 659 | 2 | 64 | 471 | |
329 | 329 | 661 | 2 | 65 | 478 | |
330 | 330 | 0 | 3 | 2 | 66 | 485 |
331 | 331 | 0 | 3 | 2 | 67 | 492 |
332 | 332 | 0 | 3 | 3 | 0 | 39 |
333 | 333 | 0 | 3 | 3 | 1 | 48 |
334 | 334 | 0 | 3 | 3 | 2 | 57 |
335 | 335 | 673 | 3 | 3 | 66 | |
336 | 336 | 0 | 3 | 3 | 4 | 75 |
337 | 337 | 677 | 3 | 5 | 84 | |
338 | 338 | 0 | 3 | 3 | 6 | 93 |
339 | 339 | 0 | 3 | 3 | 7 | 102 |
340 | 340 | 683 | 3 | 8 | 111 | |
341 | 341 | 0 | 3 | 3 | 9 | 120 |
342 | 342 | 0 | 3 | 3 | 10 | 129 |
343 | 343 | 0 | 3 | 3 | 11 | 138 |
344 | 344 | 691 | 3 | 12 | 147 | |
345 | 345 | 0 | 3 | 3 | 13 | 156 |
346 | 346 | 0 | 3 | 3 | 14 | 165 |
347 | 347 | 0 | 3 | 3 | 15 | 174 |
348 | 348 | 0 | 3 | 3 | 16 | 183 |
349 | 349 | 701 | 3 | 17 | 192 | |
350 | 350 | 0 | 3 | 3 | 18 | 201 |
351 | 351 | 0 | 3 | 3 | 19 | 210 |
352 | 352 | 0 | 3 | 3 | 20 | 219 |
353 | 353 | 709 | 3 | 21 | 228 | |
354 | 354 | 0 | 3 | 3 | 22 | 237 |
355 | 355 | 0 | 3 | 3 | 23 | 246 |
356 | 356 | 0 | 3 | 3 | 24 | 255 |
357 | 357 | 0 | 3 | 3 | 25 | 264 |
358 | 358 | 719 | 3 | 26 | 273 | |
359 | 359 | 0 | 3 | 3 | 27 | 282 |
360 | 360 | 0 | 3 | 3 | 28 | 291 |
361 | 361 | 0 | 3 | 3 | 29 | 300 |
362 | 362 | 727 | 3 | 30 | 309 | |
363 | 363 | 0 | 3 | 3 | 31 | 318 |
364 | 364 | 0 | 3 | 3 | 32 | 327 |
365 | 365 | 733 | 3 | 33 | 336 | |
366 | 366 | 0 | 3 | 3 | 34 | 345 |
367 | 367 | 0 | 3 | 3 | 35 | 354 |
368 | 368 | 739 | 3 | 36 | 363 | |
369 | 369 | 0 | 3 | 3 | 37 | 372 |
370 | 370 | 743 | 3 | 38 | 381 | |
371 | 371 | 0 | 3 | 3 | 39 | 390 |
372 | 372 | 0 | 3 | 3 | 40 | 399 |
373 | 373 | 0 | 3 | 3 | 41 | 408 |
374 | 374 | 751 | 3 | 42 | 417 | |
375 | 375 | 0 | 3 | 3 | 43 | 426 |
376 | 376 | 0 | 3 | 3 | 44 | 435 |
377 | 377 | 757 | 3 | 45 | 444 | |
378 | 378 | 0 | 3 | 3 | 46 | 453 |
379 | 379 | 761 | 3 | 47 | 462 | |
380 | 380 | 0 | 3 | 3 | 48 | 471 |
381 | 381 | 0 | 3 | 3 | 49 | 480 |
382 | 382 | 0 | 3 | 3 | 50 | 489 |
383 | 383 | 769 | 3 | 51 | 498 | |
384 | 384 | 0 | 3 | 4 | 0 | 59 |
385 | 385 | 773 | 4 | 1 | 70 | |
386 | 386 | 0 | 3 | 4 | 2 | 81 |
387 | 387 | 0 | 3 | 4 | 3 | 92 |
388 | 388 | 0 | 3 | 4 | 4 | 103 |
389 | 389 | 0 | 3 | 4 | 5 | 114 |
390 | 390 | 0 | 3 | 4 | 6 | 125 |
391 | 391 | 0 | 3 | 4 | 7 | 136 |
392 | 392 | 787 | 4 | 8 | 147 | |
393 | 393 | 0 | 3 | 4 | 9 | 158 |
394 | 394 | 0 | 3 | 4 | 10 | 169 |
395 | 395 | 0 | 3 | 4 | 11 | 180 |
396 | 396 | 0 | 3 | 4 | 12 | 191 |
397 | 397 | 797 | 4 | 13 | 202 | |
398 | 398 | 0 | 3 | 4 | 14 | 213 |
399 | 399 | 0 | 3 | 4 | 15 | 224 |
400 | 400 | 0 | 3 | 4 | 16 | 235 |
401 | 401 | 0 | 3 | 4 | 17 | 246 |
402 | 402 | 0 | 3 | 4 | 18 | 257 |
403 | 403 | 809 | 4 | 19 | 268 | |
404 | 404 | 811 | 4 | 20 | 279 | |
405 | 405 | 0 | 3 | 4 | 21 | 290 |
406 | 406 | 0 | 3 | 4 | 22 | 301 |
407 | 407 | 0 | 3 | 4 | 23 | 312 |
408 | 408 | 0 | 3 | 4 | 24 | 323 |
409 | 409 | 821 | 4 | 25 | 334 | |
410 | 410 | 823 | 4 | 26 | 345 | |
411 | 411 | 0 | 3 | 4 | 27 | 356 |
412 | 412 | 827 | 4 | 28 | 367 | |
413 | 413 | 829 | 4 | 29 | 378 | |
414 | 414 | 0 | 3 | 4 | 30 | 389 |
415 | 415 | 0 | 3 | 4 | 31 | 400 |
416 | 416 | 0 | 3 | 4 | 32 | 411 |
417 | 417 | 0 | 3 | 4 | 33 | 422 |
418 | 418 | 839 | 4 | 34 | 433 | |
419 | 419 | 0 | 3 | 4 | 35 | 444 |
420 | 420 | 0 | 3 | 4 | 36 | 455 |
421 | 421 | 0 | 3 | 4 | 37 | 466 |
422 | 422 | 0 | 3 | 4 | 38 | 477 |
423 | 423 | 0 | 3 | 4 | 39 | 488 |
424 | 424 | 0 | 3 | 5 | 0 | 83 |
425 | 425 | 853 | 5 | 1 | 96 | |
426 | 426 | 0 | 3 | 5 | 2 | 109 |
427 | 427 | 857 | 5 | 3 | 122 | |
428 | 428 | 859 | 5 | 4 | 135 | |
429 | 429 | 0 | 3 | 5 | 5 | 148 |
430 | 430 | 863 | 5 | 6 | 161 | |
431 | 431 | 0 | 3 | 5 | 7 | 174 |
432 | 432 | 0 | 3 | 5 | 8 | 187 |
433 | 433 | 0 | 3 | 5 | 9 | 200 |
434 | 434 | 0 | 3 | 5 | 10 | 213 |
435 | 435 | 0 | 3 | 5 | 11 | 226 |
436 | 436 | 0 | 3 | 5 | 12 | 239 |
437 | 437 | 877 | 5 | 13 | 252 | |
438 | 438 | 0 | 3 | 5 | 14 | 265 |
439 | 439 | 881 | 5 | 15 | 278 | |
440 | 440 | 883 | 5 | 16 | 291 | |
441 | 441 | 0 | 3 | 5 | 17 | 304 |
442 | 442 | 887 | 5 | 18 | 317 | |
443 | 443 | 0 | 3 | 5 | 19 | 330 |
444 | 444 | 0 | 3 | 5 | 20 | 343 |
445 | 445 | 0 | 3 | 5 | 21 | 356 |
446 | 446 | 0 | 3 | 5 | 22 | 369 |
447 | 447 | 0 | 3 | 5 | 23 | 382 |
448 | 448 | 0 | 3 | 5 | 24 | 395 |
449 | 449 | 0 | 3 | 5 | 25 | 408 |
450 | 450 | 0 | 3 | 5 | 26 | 421 |
451 | 451 | 0 | 3 | 5 | 27 | 434 |
452 | 452 | 907 | 5 | 28 | 447 | |
453 | 453 | 0 | 3 | 5 | 29 | 460 |
454 | 454 | 911 | 5 | 30 | 473 | |
455 | 455 | 0 | 3 | 5 | 31 | 486 |
456 | 456 | 0 | 3 | 6 | 0 | 111 |
457 | 457 | 0 | 3 | 6 | 1 | 126 |
458 | 458 | 919 | 6 | 2 | 141 | |
459 | 459 | 0 | 3 | 6 | 3 | 156 |
460 | 460 | 0 | 3 | 6 | 4 | 171 |
461 | 461 | 0 | 3 | 6 | 5 | 186 |
462 | 462 | 0 | 3 | 6 | 6 | 201 |
463 | 463 | 929 | 6 | 7 | 216 | |
464 | 464 | 0 | 3 | 6 | 8 | 231 |
465 | 465 | 0 | 3 | 6 | 9 | 246 |
466 | 466 | 0 | 3 | 6 | 10 | 261 |
467 | 467 | 937 | 6 | 11 | 276 | |
468 | 468 | 0 | 3 | 6 | 12 | 291 |
469 | 469 | 941 | 6 | 13 | 306 | |
470 | 470 | 0 | 3 | 6 | 14 | 321 |
471 | 471 | 0 | 3 | 6 | 15 | 336 |
472 | 472 | 947 | 6 | 16 | 351 | |
473 | 473 | 0 | 3 | 6 | 17 | 366 |
474 | 474 | 0 | 3 | 6 | 18 | 381 |
475 | 475 | 953 | 6 | 19 | 396 | |
476 | 476 | 0 | 3 | 6 | 20 | 411 |
477 | 477 | 0 | 3 | 6 | 21 | 426 |
478 | 478 | 0 | 3 | 6 | 22 | 441 |
479 | 479 | 0 | 3 | 6 | 23 | 456 |
480 | 480 | 0 | 3 | 6 | 24 | 471 |
481 | 481 | 0 | 3 | 6 | 25 | 486 |
482 | 482 | 967 | 7 | 0 | 143 | |
483 | 483 | 0 | 3 | 7 | 1 | 160 |
484 | 484 | 971 | 7 | 2 | 177 | |
485 | 485 | 0 | 3 | 7 | 3 | 194 |
486 | 486 | 0 | 3 | 7 | 4 | 211 |
487 | 487 | 977 | 7 | 5 | 228 | |
488 | 488 | 0 | 3 | 7 | 6 | 245 |
489 | 489 | 0 | 3 | 7 | 7 | 262 |
490 | 490 | 983 | 7 | 8 | 279 | |
491 | 491 | 0 | 3 | 7 | 9 | 296 |
492 | 492 | 0 | 3 | 7 | 10 | 313 |
493 | 493 | 0 | 3 | 7 | 11 | 330 |
494 | 494 | 991 | 7 | 12 | 347 | |
495 | 495 | 0 | 3 | 7 | 13 | 364 |
496 | 496 | 0 | 3 | 7 | 14 | 381 |
497 | 497 | 997 | 7 | 15 | 398 | |
498 | 498 | 0 | 3 | 7 | 16 | 415 |
7 | 17 | 432 | ||||
7 | 18 | 449 | ||||
7 | 19 | 466 | ||||
7 | 20 | 483 | ||||
8 | 0 | 179 | ||||
8 | 1 | 198 | ||||
8 | 2 | 217 | ||||
8 | 3 | 236 | ||||
8 | 4 | 255 | ||||
8 | 5 | 274 | ||||
8 | 6 | 293 | ||||
8 | 7 | 312 | ||||
8 | 8 | 331 | ||||
8 | 9 | 350 | ||||
8 | 10 | 369 | ||||
8 | 11 | 388 | ||||
8 | 12 | 407 | ||||
8 | 13 | 426 | ||||
8 | 14 | 445 | ||||
8 | 15 | 464 | ||||
8 | 16 | 483 | ||||
9 | 0 | 219 | ||||
9 | 1 | 240 | ||||
9 | 2 | 261 | ||||
9 | 3 | 282 | ||||
9 | 4 | 303 | ||||
9 | 5 | 324 | ||||
9 | 6 | 345 | ||||
9 | 7 | 366 | ||||
9 | 8 | 387 | ||||
9 | 9 | 408 | ||||
9 | 10 | 429 | ||||
9 | 11 | 450 | ||||
9 | 12 | 471 | ||||
9 | 13 | 492 | ||||
10 | 0 | 263 | ||||
10 | 1 | 286 | ||||
10 | 2 | 309 | ||||
10 | 3 | 332 | ||||
10 | 4 | 355 | ||||
10 | 5 | 378 | ||||
10 | 6 | 401 | ||||
10 | 7 | 424 | ||||
10 | 8 | 447 | ||||
10 | 9 | 470 | ||||
10 | 10 | 493 | ||||
11 | 0 | 311 | ||||
11 | 1 | 336 | ||||
11 | 2 | 361 | ||||
11 | 3 | 386 | ||||
11 | 4 | 411 | ||||
11 | 5 | 436 | ||||
11 | 6 | 461 | ||||
11 | 7 | 486 | ||||
12 | 0 | 363 | ||||
12 | 1 | 390 | ||||
12 | 2 | 417 | ||||
12 | 3 | 444 | ||||
12 | 4 | 471 | ||||
12 | 5 | 498 | ||||
13 | 0 | 419 | ||||
13 | 1 | 448 | ||||
13 | 2 | 477 | ||||
14 | 0 | 479 |
Ergo: The procedure supplies completely all prime numbers (bold type) in the choosen example
>2 and <1000.
Munich, 7 August 2019
Gottfried Färberböck