The determination of all prime numbers in a chosen area with the u-method

PRIME NUMBER SERIES 5

The determination of all prime numbers in a selected range with the u-method

 

Assertion for the prime set \mathbb{P}: With the set operation

\mathbb{P} = \mathbb{U}_{2} \ \mathbb{U}_{km}

all prime numbers are determinable.

Legend:

\mathbb{P} stands for the infinite set of all prime numbers

\mathbb{U}_{2} stands for the infinite set of all odd numbers greater than 1 and the number 2

\ is the symbol, which is used for forming the difference of two sets

\mathbb{U}_{km} stands for the infinite set of all composite odd numbers greater than 1

Definition: A composite odd number is the product of at least two odd numbers, each greater than 2.

Proof:

2 is the only even prime number, since all even numbers greater than 2 are divisible by 2 without remainder. All prime numbers greater than 2 must therefore be odd. All odd numbers greater than 2 are given by \mathbb{U} with

\mathbb{U} = {u | u = 2n+3 ʌ n ∈ ℕ} = {3,5,7,9,11,13,15…}

\mathbb{U}_{2} = {2, \mathbb{U}} = {2,3,5,7,9,11,13,15…}

Assertion for \mathbb{U}_{km}: All composite odd numbers greater than 1 are given by \mathbb{U}_{km} with

\mathbb{U}_{km} = {ukm | ukm = u²+2mu ʌ u = 2k+3 ʌ k, m ∈ ℕ}

Proof of the assertion for \mathbb{U}_{km}:

The equation

ukm = u²+2mu

can be transformed into

ukm = u(u+2m)

ukm is therefore the product of the odd numbers u and (u+2m).

Substituting u = 2k+3 into ukm = u(u+2m) yields

ukm = (2k+3)(2k+3+2m)

With k,m ∈ ℕ, (2k+3)(2k+3+2m) yields all possible products of odd numbers greater than 1 and thus all composite odd numbers greater than 1 that exist.

Thus yields

\mathbb{U}_{km} = {ukm | ukm = u²+2mu ʌ u = 2k+3 ʌ k, m ∈ ℕ}

all composite odd numbers greater than 1 that exist.

Resumption of the proof regarding the prime set \mathbb{P}:

As prime set \mathbb{U}_{2} consists of all uneven numbers greater than 2 and the number 2 and \mathbb{U}_{km} consists of all divisible uneven numbers greater than 2, all other numbers must be prime numbers. Thus \mathbb{P} is the complementary set of \mathbb{U}_{km} relating to \mathbb{U}_{2}.

\mathbb{P} = \mathbb{U}_{2} \ \mathbb{U}_{km}

\mathbb{P}\mathbb{U}_{km} = Ø

Out of this follows

\mathbb{P}= \mathbb{U}_{2} \ \mathbb{U}_{km} = {p | p ∈ \mathbb{U}_{2} ʌ p ∉ \mathbb{U}_{km}} = \mathbb{C}_{\mathbb{U}_{2} (\mathbb{U}_{km})

Example 1: Determine all prime numbers 1<p<1000.

P= \mathbb{U}_{2} \ \mathbb{U}_{km}

\mathbb{U}_{2} = {2,3,5,7,9,11, …,999}

\mathbb{U}_{km} = {ukm | ukm = (2k+3)²+2m(2k+3) ʌ k, m ∈ ℕ}

For k=0 follows: U0m = {u0m | u0m=9+6m ʌ m ∈ ℕ}={9,15,21,27,…,999}

For k=1 follows: U1m = {u1m | u1m=25+10m ʌ m ∈ ℕ}={25,35,45,55,…,995}

For k=2 follows: U2m = {u2m | u2m=49+14m ʌ m ∈ ℕ}={49,63,77,91,…,987}

For k=3 follows: U3m does not need to be considered

For k=4 follows: U4m = {u4m | u4m=121+22m ʌ m ∈ ℕ}={121,143,165,187,…,979}

For k=5 follows: U5m = {u5m | u5m=169+26m ʌ m ∈ ℕ}={169,195,221,247,…,975}

For k=6 follows: U6m does not need to be considered

For k=7 follows: U7m = {u7m | u7m=289+34m ʌ m ∈ ℕ}={289,323,357,…,969}

For k=8 follows: U8m = {u8m | u8m=361+38m ʌ m ∈ ℕ}={361,399,437,…,969}

For k=9 follows: U9m does not need to be considered

For k=10 follows: U10m = {u10m | u10m=529+46m ʌ m ∈ ℕ}={529,575,621,…,989}

and so on

 

u35711131719232931
92549121169289361529841961
U2ukmukmukmukmukmukmukmukmukmukm∑ukmp
202
303
505
707
999 
11011
13013
151515 
17017
19019
212121 
23023
252525 
272727 
29029
31031
333333 
353535 
37037
393939 
41041
43043
45454590 
47047
494949 
515151 
53053
555555 
575757 
59059
61061
636363126 
656565 
67067
696969 
71071
73073
757575150 
777777 
79079
818181 
83083
858585 
878787 
89089
919191 
939393 
959595 
97097
999999 
1010101
1030103
105105105105315 
1070107
1090109
111111111 
1130113
115115115 
117117117 
119119119 
121121121 
123123123 
125125125 
1270127
129129129 
1310131
133133133 
135135135270 
1370137
1390139
141141141 
143143143 
145145145 
147147147294 
1490149
1510151
153153153 
155155155 
1570157
159159159 
161161161 
1630163
165165165165495 
1670167
169169169 
171171171 
1730173
175175175350 
177177177 
1790179
1810181
183183183 
185185185 
187187187 
189189189378 
1910191
1930193
195195195195585 
1970197
1990199
201201201 
203203203 
205205205 
207207207 
209209209 
2110211
213213213 
215215215 
217217217 
219219219 
221221221 
2230223
225225225450 
2270227
2290229
231231231231693 
2330233
235235235 
237237237 
2390239
2410241
243243243 
245245245490 
247247247 
249249249 
2510251
253253253 
255255255510 
2570257
259259259 
261261261 
2630263
265265265 
267267267 
2690269
2710271
273273273273819 
275275275550 
2770277
279279279 
2810281
2830283
285285285570 
287287287 
289289289 
291291291 
2930293
295295295 
297297297594 
299299299 
301301301 
303303303 
305305305 
3070307
309309309 
3110311
3130313
315315315315945 
3170317
319319319 
321321321 
323323323 
325325325650 
327327327 
329329329 
3310331
333333333 
335335335 
3370337
339339339 
341341341 
343343343 
345345345690 
3470347
3490349
351351351702 
3530353
355355355 
3573573573571071 
3590359
361361361 
363363363726 
365365365 
3670367
369369369 
371371371 
3730373
375375375750 
377377377 
3790379
381381381 
3830383
3853853853851155 
387387387 
3890389
391391391 
393393393 
395395395 
3970397
3993993993991197 
4010401
403403403 
405405405810 
407407407 
4090409
411411411 
413413413 
415415415 
417417417 
4190419
4210421
423423423 
425425425850 
427427427 
4294294294291287 
4310431
4330433
435435435870 
437437437 
4390439
441441441882 
4430443
445445445 
447447447 
4490449
451451451 
453453453 
4554554554551365 
4570457
459459459918 
4610461
4630463
465465465930 
4670467
469469469 
471471471 
473473473 
475475475950 
477477477 
4790479
481481481 
483483483966 
485485485 
4870487
489489489 
4910491
493493493 
4954954954951485 
497497497 
4990499
501501501 
5030503
505505505 
5075075071014 
5090509
511511511 
5135135131026 
515515515 
517517517 
519519519 
5210521
5230523
5255255255251575 
527527527 
529529529 
531531531 
533533533 
535535535 
537537537 
5395395391078 
5410541
543543543 
545545545 
5470547
549549549 
551551551 
553553553 
5555555551110 
5570557
559559559 
5615615615611683 
5630563
565565565 
5675675671134 
5690569
5710571
573573573 
5755755751150 
5770577
579579579 
581581581 
583583583 
5855855855851755 
5870587
589589589 
591591591 
5930593
5955955955951785 
597597597 
5990599
6010601
603603603 
6056056051210 
6070607
6096096091218 
611611611 
6130613
6156156151230 
6170617
6190619
6216216211242 
623623623 
625625625 
6276276276271881 
629629629 
6310631
633633633 
635635635 
6376376371274 
639639639 
6410641
6430643
6456456451290 
6470647
649649649 
6516516511302 
6530653
655655655 
657657657 
6590659
6610661
6636636636631989 
6656656656651995 
667667667 
669669669 
671671671 
6730673
6756756751350 
6770677
679679679 
681681681 
6830683
685685685 
687687687 
689689689 
6910691
6936936936932079 
695695695 
697697697 
699699699 
7010701
703703703 
7057057051410 
707707707 
7090709
711711711 
713713713 
7157157157152145 
717717717 
7190719
721721721 
723723723 
725725725 
7270727
729729729 
731731731 
7330733
7357357357352205 
737737737 
7390739
7417417417412223 
7430743
745745745 
747747747 
749749749 
7510751
753753753 
755755755 
7570757
7597597597592277 
7610761
763763763 
7657657657652295 
767767767 
7690769
771771771 
7730773
775775775 
7777777771554 
779779779 
781781781 
783783783 
785785785 
7870787
789789789 
791791791 
793793793 
7957957951590 
7970797
799799799 
801801801 
803803803 
8058058058052415 
807807807 
8090809
8110811
813813813 
815815815 
817817817 
8198198198192457 
8210821
8230823
8258258258252475 
8270827
8290829
831831831 
8338338331666 
835835835 
837837837 
8390839
841841841 
843843843 
8458458451690 
8478478471694 
849849849 
851851851 
8530853
8558558558552565 
8570857
8590859
8618618611722 
8630863
865865865 
8678678671734 
869869869 
871871871 
873873873 
8758758751750 
8770877
879879879 
8810881
8830883
8858858851770 
8870887
889889889 
8918918911782 
893893893 
895895895 
8978978978972691 
899899899 
901901901 
9039039031806 
905905905 
9070907
909909909 
9110911
913913913 
9159159151830 
917917917 
9190919
921921921 
923923923 
925925925 
927927927 
9290929
9319319311862 
933933933 
9359359359352805 
9370937
939939939 
9410941
943943943 
9459459459452835 
9470947
949949949 
951951951 
9530953
955955955 
9579579579572871 
959959959 
961961961 
963963963 
965965965 
9670967
9699699699692907 
9710971
973973973 
9759759759752925 
9770977
979979979 
981981981 
9830983
985985985 
9879879871974 
989989989 
9910991
993993993 
995995995 
9970997
999999999 

 

 

 

Example 2: Determine all prime numbers 5400<p<5500 if existing.

 

u3571113171923293137414347535961677173
u⌈5401/u⌉54035405540454015408540654155405542354255402541254185405540654285429542754675402∑ukmp
U 
540154015401 
540354035403 
540554055405540516215 
540705407
540954095409 
541154115411 
541305413
541554155415541516245 
541705417
541905419
54215421542110842 
542354235423542316269 
542554255425542516275 
54275427542710854 
542954295429 
543105431
543354335433 
543554355435 
543705437
543954395439543916317 
544105441
544305443
544554455445544516335 
544754475447 
544905449
54515451545110902 
545354535453545316359 
545554555455 
54575457545710914 
545954595459 
546154615461 
546354635463 
546554655465 
546754675467546716401 
546954695469 
547105471
547354735473 
547554755475547516425 
547705477
547905479
548154815481548116443 
548305483
548554855485 
548754875487548716461 
548954895489 
54915491549110982 
549354935493 
54955495549510990 
549754975497 
549954995499549916497 

 

 

Munich, 7 August 2019

Gottfried Färberböck